pure/RealTimeQueue

Double-ended immutable queue with guaranteed O(1) push/pop operations (caveat: high constant factor). For a default immutable queue implementation, see pure/Queue.

This module provides an alternative implementation with better worst-case performance for single operations, e.g. pushBack and popFront. These operations are always constant time, O(1), which eliminates spikes in performance of pure/Queue operations that are caused by the amortized nature of the pure/Queue implementation, which can lead to O(n) worst-case performance for a single operation. The spikes in performance can cause a single message to take multiple more rounds to complete than most other messages.

However, the O(1) operations come at a cost of higher constant factor than the pure/Queue implementation:

For better performance across multiple operations and when the spikes in single operations are not a problem, use pure/Queue. For guaranteed O(1) operations, use pure/RealTimeQueue.


The interface is purely functional, not imperative, and queues are immutable values. In particular, Queue operations such as push and pop do not update their input queue but, instead, return the value of the modified Queue, alongside any other data. The input queue is left unchanged.

Examples of use-cases:

A Queue is internally implemented as a real-time double-ended queue based on the paper "Real-Time Double-Ended Queue Verified (Proof Pearl)". The implementation maintains worst-case constant time O(1) for push/pop operations through gradual rebalancing steps.

Construction: Create a new queue with the empty<T>() function.

Note that some operations that traverse the elements of the queue (e.g. forEach, values) preserve the order of the elements, whereas others (e.g. map, contains) do NOT guarantee that the elements are visited in any order. The order is undefined to avoid allocations, making these operations more efficient.

motoko name=import
import Queue "mo:base/pure/RealTimeQueue";

type Queue<T> = {#empty; #one : T; #two : (T, T); #three : (T, T, T); #idles : (Idle<T>, Idle<T>); #rebal : States<T>}

The real-time queue data structure can be in one of the following states:

public func empty<T>() : Queue<T>

Create a new empty queue.

Example:

motoko include=import
persistent actor {
  let queue = Queue.empty<Nat>();
  assert Queue.isEmpty(queue);
}

Runtime: O(1).

Space: O(1).

public func isEmpty<T>(queue : Queue<T>) : Bool

Determine whether a queue is empty. Returns true if queue is empty, otherwise false.

Example:

motoko include=import
persistent actor {
  let queue = Queue.empty<Nat>();
  assert Queue.isEmpty(queue);
}

Runtime: O(1).

Space: O(1).

public func singleton<T>(element : T) : Queue<T>

Create a new queue comprising a single element.

Example:

motoko include=import
persistent actor {
  let queue = Queue.singleton<Nat>(25);
  assert Queue.size(queue) == 1;
  assert Queue.peekFront(queue) == ?25;
}

Runtime: O(1).

Space: O(1).

public func size<T>(queue : Queue<T>) : Nat

Determine the number of elements contained in a queue.

Example:

motoko include=import
persistent actor {
  let queue = Queue.singleton<Nat>(42);
  assert Queue.size(queue) == 1;
}

Runtime: O(1).

Space: O(1).

public func contains<T>(
  queue : Queue<T>,
  eq : (T, T) -> Bool,
  item : T
) : Bool

Test if a queue contains a given value. Returns true if the queue contains the item, otherwise false.

Note: The order in which elements are visited is undefined, for performance reasons.

Example:

motoko include=import
import Nat "mo:base/Nat";

persistent actor {
  let queue = Queue.pushBack(Queue.pushBack(Queue.empty<Nat>(), 1), 2);
  assert Queue.contains(queue, Nat.equal, 1);
  assert not Queue.contains(queue, Nat.equal, 3);
}

Runtime: O(size)

Space: O(1)

public func peekFront<T>(queue : Queue<T>) : ?T

Inspect the optional element on the front end of a queue. Returns null if queue is empty. Otherwise, the front element of queue.

Example:

motoko include=import
persistent actor {
  let queue = Queue.pushFront(Queue.pushFront(Queue.empty<Nat>(), 2), 1);
  assert Queue.peekFront(queue) == ?1;
}

Runtime: O(1).

Space: O(1).

public func peekBack<T>(queue : Queue<T>) : ?T

Inspect the optional element on the back end of a queue. Returns null if queue is empty. Otherwise, the back element of queue.

Example:

motoko include=import
persistent actor {
  let queue = Queue.pushFront(Queue.pushFront(Queue.empty<Nat>(), 2), 1);
  assert Queue.peekBack(queue) == ?2;
}

Runtime: O(1).

Space: O(1).

public func pushFront<T>(queue : Queue<T>, element : T) : Queue<T>

Insert a new element on the front end of a queue. Returns the new queue with element in the front followed by the elements of queue.

Example:

motoko include=import
persistent actor {
  let queue = Queue.pushFront(Queue.pushFront(Queue.empty<Nat>(), 2), 1);
  assert Queue.peekFront(queue) == ?1;
  assert Queue.peekBack(queue) == ?2;
  assert Queue.size(queue) == 2;
}

Runtime: O(1) worst-case!

Space: O(1) worst-case!

public func pushBack<T>(queue : Queue<T>, element : T) : Queue<T>

Insert a new element on the back end of a queue. Returns the new queue with all the elements of queue, followed by element on the back.

Example:

motoko include=import
persistent actor {
  let queue = Queue.pushBack(Queue.pushBack(Queue.empty<Nat>(), 1), 2);
  assert Queue.peekBack(queue) == ?2;
  assert Queue.size(queue) == 2;
}

Runtime: O(1) worst-case!

Space: O(1) worst-case!

public func popFront<T>(queue : Queue<T>) : ?(T, Queue<T>)

Remove the element on the front end of a queue. Returns null if queue is empty. Otherwise, it returns a pair of the first element and a new queue that contains all the remaining elements of queue.

Example:

motoko include=import
import Runtime "mo:base/Runtime";

persistent actor {
  do {
    let initial = Queue.pushBack(Queue.pushBack(Queue.empty<Nat>(), 1), 2);
    let ?(frontElement, remainingQueue) = Queue.popFront(initial) else Runtime.trap "Empty queue impossible";
    assert frontElement == 1;
    assert Queue.size(remainingQueue) == 1;
  }
}

Runtime: O(1) worst-case!

Space: O(1) worst-case!

public func popBack<T>(queue : Queue<T>) : ?(Queue<T>, T)

Remove the element on the back end of a queue. Returns null if queue is empty. Otherwise, it returns a pair of a new queue that contains the remaining elements of queue and, as the second pair item, the removed back element.

Example:

motoko include=import
import Runtime "mo:base/Runtime";

persistent actor {
  do {
    let initial = Queue.pushBack(Queue.pushBack(Queue.empty<Nat>(), 1), 2);
    let ?(reducedQueue, removedElement) = Queue.popBack(initial) else Runtime.trap "Empty queue impossible";
    assert removedElement == 2;
    assert Queue.size(reducedQueue) == 1;
  }
}

Runtime: O(1) worst-case!

Space: O(1) worst-case!

public func fromIter<T>(iter : Iter<T>) : Queue<T>

Turn an iterator into a queue, consuming it.

Example:

motoko include=import
persistent actor {
  let queue = Queue.fromIter<Nat>([0, 1, 2, 3, 4].values());
  assert Queue.peekFront(queue) == ?0;
  assert Queue.peekBack(queue) == ?4;
  assert Queue.size(queue) == 5;
}

Runtime: O(size)

Space: O(size)

public func values<T>(queue : Queue<T>) : Iter.Iter<T>

Create an iterator over the elements in the queue. The order of the elements is from front to back.

Example:

motoko include=import
import Iter "mo:base/Iter";

persistent actor {
  let queue = Queue.fromIter<Nat>([1, 2, 3].values());
  assert Iter.toArray(Queue.values(queue)) == [1, 2, 3];
}

Runtime: O(1) to create the iterator and for each next() call.

Space: O(1) to create the iterator and for each next() call.

public func equal<T>(
  queue1 : Queue<T>,
  queue2 : Queue<T>,
  equality : (T, T) -> Bool
) : Bool

Compare two queues for equality using a provided equality function to compare their elements. Two queues are considered equal if they contain the same elements in the same order.

Example:

motoko include=import
import Nat "mo:base/Nat";

persistent actor {
  let queue1 = Queue.fromIter<Nat>([1, 2, 3].values());
  let queue2 = Queue.fromIter<Nat>([1, 2, 3].values());
  let queue3 = Queue.fromIter<Nat>([1, 3, 2].values());
  assert Queue.equal(queue1, queue2, Nat.equal);
  assert not Queue.equal(queue1, queue3, Nat.equal);
}

Runtime: O(size)

Space: O(size)

public func compare<T>(
  queue1 : Queue<T>,
  queue2 : Queue<T>,
  comparison : (T, T) -> Types.Order
) : Types.Order

Compare two queues lexicographically using a provided comparison function to compare their elements. Returns #less if queue1 is lexicographically less than queue2, #equal if they are equal, and #greater otherwise.

Example:

motoko include=import
import Nat "mo:base/Nat";

persistent actor {
  let queue1 = Queue.fromIter<Nat>([1, 2, 3].values());
  let queue2 = Queue.fromIter<Nat>([1, 2, 4].values());
  assert Queue.compare(queue1, queue2, Nat.compare) == #less;
}

Runtime: O(size)

Space: O(size)

public func all<T>(queue : Queue<T>, predicate : T -> Bool) : Bool

Return true if the given predicate is true for all queue elements.

Example:

motoko include=import
persistent actor {
  let queue = Queue.fromIter<Nat>([2, 4, 6].values());
  assert Queue.all<Nat>(queue, func n = n % 2 == 0);
  assert not Queue.all<Nat>(queue, func n = n > 4);
}

Runtime: O(size)

Space: O(size) as the current implementation uses values to iterate over the queue.

*Runtime and space assumes that the predicate runs in O(1) time and space.

public func any<T>(queue : Queue<T>, predicate : T -> Bool) : Bool

Return true if the given predicate is true for any queue element.

Example:

motoko include=import
persistent actor {
  let queue = Queue.fromIter<Nat>([1, 2, 3].values());
  assert Queue.any<Nat>(queue, func n = n > 2);
  assert not Queue.any<Nat>(queue, func n = n > 3);
}

Runtime: O(size)

Space: O(size) as the current implementation uses values to iterate over the queue.

*Runtime and space assumes that the predicate runs in O(1) time and space.

public func forEach<T>(queue : Queue<T>, f : T -> ())

Call the given function for its side effect on each queue element in order: from front to back.

Example:

motoko include=import
import Nat "mo:base/Nat";
persistent actor {
  var text = "";
  let queue = Queue.fromIter<Nat>([1, 2, 3].values());
  Queue.forEach<Nat>(queue, func n = text #= Nat.toText(n));
  assert text == "123";
}

Runtime: O(size)

Space: O(size)

*Runtime and space assumes that f runs in O(1) time and space.

public func map<T1, T2>(queue : Queue<T1>, f : T1 -> T2) : Queue<T2>

Create a new queue by applying the given function to each element of the original queue.

Note: The order of visiting elements is undefined with the current implementation.

Example:

motoko include=import
import Nat "mo:base/Nat";

persistent actor {
  let queue = Queue.fromIter<Nat>([1, 2, 3].values());
  let mapped = Queue.map<Nat, Nat>(queue, func n = n * 2);
  assert Queue.size(mapped) == 3;
  assert Queue.peekFront(mapped) == ?2;
  assert Queue.peekBack(mapped) == ?6;
}

Runtime: O(size)

Space: O(size)

*Runtime and space assumes that f runs in O(1) time and space.

public func filter<T>(queue : Queue<T>, predicate : T -> Bool) : Queue<T>

Create a new queue with only those elements of the original queue for which the given predicate returns true.

Example:

motoko include=import
persistent actor {
  let queue = Queue.fromIter<Nat>([1, 2, 3, 4].values());
  let filtered = Queue.filter<Nat>(queue, func n = n % 2 == 0);
  assert Queue.size(filtered) == 2;
  assert Queue.peekFront(filtered) == ?2;
  assert Queue.peekBack(filtered) == ?4;
}

Runtime: O(size)

Space: O(size)

*Runtime and space assumes that predicate runs in O(1) time and space.

public func filterMap<T, U>(queue : Queue<T>, f : T -> ?U) : Queue<U>

Create a new queue by applying the given function to each element of the original queue and collecting the results for which the function returns a non-null value.

Example:

motoko include=import
persistent actor {
  let queue = Queue.fromIter<Nat>([1, 2, 3, 4].values());
  let filtered = Queue.filterMap<Nat, Nat>(queue, func n = if (n % 2 == 0) { ?n } else null);
  assert Queue.size(filtered) == 2;
  assert Queue.peekFront(filtered) == ?2;
  assert Queue.peekBack(filtered) == ?4;
}

Runtime: O(size)

Space: O(size)

*Runtime and space assumes that f runs in O(1) time and space.

public func toText<T>(queue : Queue<T>, f : T -> Text) : Text

Create a Text representation of a queue for debugging purposes.

Example:

motoko include=import
import Nat "mo:base/Nat";

persistent actor {
  let queue = Queue.fromIter<Nat>([1, 2, 3].values());
  assert Queue.toText(queue, Nat.toText) == "RealTimeQueue[1, 2, 3]";
}

Runtime: O(size)

Space: O(size)

*Runtime and space assumes that f runs in O(1) time and space.

public func reverse<T>(queue : Queue<T>) : Queue<T>

Reverse the order of elements in a queue. This operation is cheap, it does NOT require copying the elements.

Example:

motoko include=import
persistent actor {
  let queue = Queue.fromIter<Nat>([1, 2, 3].values());
  let reversed = Queue.reverse(queue);
  assert Queue.peekFront(reversed) == ?3;
  assert Queue.peekBack(reversed) == ?1;
}

Runtime: O(1)

Space: O(1)