1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
(*
This module originated as a copy of interpreter/binary/encode.ml in the
reference implementation.
With adjustments from memory64.
The changes are:
* Support for writing out a source map for the Code parts
* Support for additional custom sections
* Manual selective support for bulk-memory operations `memory_copy` and `memory_fill` (WebAssembly/spec@7fa2f20).
* Support for passive data segments (incl. `MemoryInit`).
* Support for table index in `call_indirect` (reference-types proposal).
The code is otherwise as untouched as possible, so that we can relatively
easily apply diffs from the original code (possibly manually).
*)
(* Note [funneling DIEs through Wasm.Ast]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The DWARF debugging information entry (DIE) is a simple data carrier meant
to be transmitted in a sequential fashion. Here, DIEs are attached to
specially crafted instructions (Meta) in the instruction stream
that is derived from the Wasm.Ast. Since these instructions are inserted artificially
and are not intended for execution, they will not be emitted as instructions, but
aggregated, correlated and finally output into DWARF sections of the binary.
DIEs are defined in Dwarf5.Meta and can be recognised via the `is_dwarf_like` predicate.
When extracted from the instruction stream using the predicate, we can check whether
they are a tag (pre-filled) with attributes/subtags or free-standing attributes that will
end up in the last tag. Similarly later tags nest into open tags. The larger-scale hierarchical
structure is finally restored when all instructions are emitted. The mechanism is described in
the blog post http://eli.thegreenplace.net/2011/09/29/an-interesting-tree-serialization-algorithm-from-dwarf
*)
(* Note [bubbling up types in the tag hierarchy]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Certain DIEs (precisely `DW_TAG_*`s) can be referenced from attributes
by means of position in the `.debug_info` section. E.g. types are referenced
from a variety of DIEs. But since we generate DIEs for types on the fly,
they end up at the same hierarchy level as the referencing DIE. Such references
are allocated serially by extending a mapping to promises. The promise gets
fulfilled when the prerequisite DIE is externalised into the section.
To have every referencable tag a fulfilled section position, on the tag closing
trigger we move every referencable DIE out of it and into the parent, effectively
bubbling all up to toplevel. Then, immediately before externalising the DIE tree,
we perform a stable sort by serial number, with non-referencable DIEs trailing.
*)
(* Note [placeholder promises for typedefs]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When forming the DIE for a Motoko type synonym (`type List = ...`)
we need to do something special. Since such typedefs are cycle-breakers
in the type system, we will need to adopt the same property in the
`.debug_info` section too. So, we'll output `DW_TAG_typedef` before
even knowing which type it refers to. Instead we use a DW_FORM_ref4
for its `DW_AT_type` attribute, which is backpatchable. The value of this
attribute is an integer, pointing to a fulfilled promise created when the
DIE was formed. It got fulfilled when the typedef's type became known,
another DIE, formed shortly after the typedef's. Resolving this fulfilled
promise in turn gives us the index (actual type ref) of an unfulfilled
promise (the forward reference). This forward reference will be fulfilled
to be a byte offset in the section as soon as the corresponding DIE is emitted.
We keep a function that performs the patching of the section (before it is
written to disk) by overwriting the preliminary bytes in `DW_TAG_typedef`'s
`DW_AT_type` with the now fulfilled offset obtained from the forward reference.
*)
module Promise = Lib.Promise
open Dwarf5.Meta
open CustomModule
(* Version *)
let version = 1l
(* Errors *)
module Code = Wasm.Error.Make ()
(* Encoding stream *)
type stream =
{
buf : Buffer.t;
patches : (int * char) list ref
}
let stream () = {buf = Buffer.create 8192; patches = ref []}
let pos s = Buffer.length s.buf
let put s b = Buffer.add_char s.buf b
let put_string s bs = Buffer.add_string s.buf bs
let patch s pos b = s.patches := (pos, b) :: !(s.patches)
let to_string s =
let bs = Buffer.to_bytes s.buf in
List.iter (fun (pos, b) -> Bytes.set bs pos b) !(s.patches);
Bytes.to_string bs
module References = Map.Make (struct type t = int let compare = compare end)
let dw_references = ref References.empty
let num_dw_references = ref 1 (* 0 would mean: "this tag doesn't fulfill a reference" *)
let promise_reference_slot p =
let have = !num_dw_references in
dw_references := References.add have p !dw_references;
num_dw_references := 1 + have;
have
let allocate_reference_slot () =
promise_reference_slot (Promise.make ())
(* Encoding *)
let encode (em : extended_module) =
let s = stream () in
(* source map *)
let map = Buffer.create 0 in
let sources = ref [] in
let sourcesContent = ref [] in
let segs = ref 0 in
let prev_if = ref 0 in
let prev_ol = ref 0 in
let prev_oc = ref 0 in
let prev_il = ref 0 in
let prev_ic = ref 0 in
(* modify reference *)
let modif r f = r := f !r in
let rec add_source filename = function (* FIXME: use add_string *)
| [] ->
sources := !sources @ [ filename ];
let source_code =
try
if filename = "prelude" then Prelude.prelude else
if filename = "prim" then Prelude.prim_module ~timers:!Mo_config.Flags.global_timer else
(*
Here we opportunistically see if we can find the source file
mentioned in the source location, and if we can, include its source
verbatim in the source map
*)
let ic = Stdlib.open_in filename in
let n = in_channel_length ic in
let s = Bytes.create n in
really_input ic s 0 n;
close_in ic;
Bytes.to_string s
with _ -> "" in
sourcesContent := !sourcesContent @ [ source_code ];
0
| h :: t -> if filename = h then 0 else 1 + add_source filename t
in
let add_string gen strings str = (* FIXME: perform suffix compression? *)
let strs = !strings in
match List.assoc_opt str strs with
| Some v -> v
| _ ->
let v = gen strs in
let strs' = (str, v) :: strs in strings := strs'; v
in
let dwarf_strings = ref [] in
let add_dwarf_string =
add_string (function | [] -> 0 | (h, p) :: _ -> String.length h + 1 + p) dwarf_strings in
let module Instrs = Set.Make (struct type t = int * Wasm.Source.pos let compare = compare end) in
let statement_positions = ref Instrs.empty in
let module DW_Sequence = Set.Make (struct type t = int * Instrs.t * int let compare = compare end) in
let sequence_bounds = ref DW_Sequence.empty in
let dwarf_tags = ref [Tag (None, 0, [])] in
let is_closed tag =
let tag_of (t', _, _) = tag = t' in
let (_, has_children, _) = List.find tag_of Abbreviation.abbreviations in
not (has_children <> 0)
in
let code_section_start = ref 0 in
let add_dwarf_tag refi tag =
let position_attr =
if tag = Dwarf5.dw_TAG_lexical_block then
[IntAttribute (Dwarf5.dw_AT_low_pc, pos s - !code_section_start)]
else [] in
(* invariant: at most one closed tag waiting for attributes *)
dwarf_tags :=
match !dwarf_tags with
| [Tag (refi, t, viscera)] when tag = Dwarf5.dw_TAG_compile_unit && t = 0 ->
[Tag (refi, tag, viscera)]
| Tag (_, t', _) as closed :: Tag (r, t, arts) :: tail when is_closed t' ->
Tag (refi, tag, position_attr) :: Tag (r, t, closed :: arts) :: tail
| tail ->
Tag (refi, tag, position_attr) :: tail in
let no_tags = List.for_all (function Tag _ -> false | _ -> true) in
let hoistables = List.partition (function Tag (Some r, _, _) -> true | _ -> false) in
let rec close_dwarf genuine =
(* hoist out referencable tags,
see Note [bubbling up types in the tag hierarchy] *)
begin match !dwarf_tags with
| Tag (refi, t, viscera) :: Tag (refi', t', viscera') :: tail
when genuine && Dwarf5.(dw_TAG_subprogram = t land 0xFF || dw_TAG_lexical_block = t land 0xFF) ->
let hoist, stay = hoistables viscera in
dwarf_tags := Tag (refi, t, stay) :: Tag (refi', t', hoist @ viscera') :: tail
| _ -> ()
end;
match !dwarf_tags with
| Tag (_, t, viscera) :: tail when Dwarf5.dw_TAG_lexical_block = t && no_tags viscera ->
dwarf_tags := tail
| Tag (refi, t, viscera) :: tail when genuine && Dwarf5.dw_TAG_lexical_block = t ->
dwarf_tags := Tag (refi, t, IntAttribute (Dwarf5.dw_AT_high_pc, pos s - !code_section_start) :: viscera) :: tail;
close_dwarf false
| [] -> failwith "no open DW_TAG"
| [Tag (None, t, viscera)] when Dwarf5.dw_TAG_compile_unit = t ->
dwarf_tags := Tag (None, t, viscera) :: []
| [Tag _] -> failwith "TOPLEVEL: NOT NESTING"
| Tag (_, t', _) as closed :: Tag (r, t, arts) :: tail when is_closed t' ->
dwarf_tags := Tag (r, t, closed :: arts) :: tail; close_dwarf genuine
| Tag (_, t', _) as nested :: Tag (r, tag, arts) :: t ->
dwarf_tags := Tag (r, tag, nested :: arts) :: t
| _ -> failwith "cannot close DW_AT" in
let add_dwarf_attribute attr =
dwarf_tags := match !dwarf_tags with
| Tag (r, tag, arts) :: t -> Tag (r, tag, attr :: arts) :: t
| _ -> assert false
in
(* keeping count of the DWARF code sequence we are in *)
let sequence_number = ref 0 in
(* array of the sizes of the emitted subprograms *)
let subprogram_sizes = Promise.make () in
(* offset of the range lists section *)
let rangelists = Promise.make () in
let extract_dwarf refi tag =
let open Dwarf5 in
let extract = function
| OffsetAttribute at when at = dw_AT_low_pc && tag = dw_TAG_compile_unit ->
add_dwarf_attribute (IntAttribute (at, 0))
| OffsetAttribute at when at = dw_AT_low_pc && tag land 0xFF = dw_TAG_subprogram ->
add_dwarf_attribute (IntAttribute (at, !sequence_number))
| OffsetAttribute at when at = dw_AT_high_pc && tag land 0xFF = dw_TAG_subprogram ->
let s = !sequence_number in
let resolve () = IntAttribute (at, Array.get (Promise.value subprogram_sizes) s) in
add_dwarf_attribute (FutureAttribute resolve)
| OffsetAttribute at when at = dw_AT_ranges ->
let resolve () = IntAttribute (at, Promise.value rangelists) in
add_dwarf_attribute (FutureAttribute resolve) (* see Note [Low_pc, High_pc, Ranges are special] *)
| (IntAttribute _ | StringAttribute _) as attr ->
add_dwarf_attribute attr
| _ -> assert false
in
add_dwarf_tag refi tag;
List.iter extract
in
let add_to_map file il ic ol oc =
let il = il - 1 in
let if_ = add_source file !sources in
if ol <> !prev_ol then Buffer.add_char map ';';
Vlq.Base64.encode map (oc - !prev_oc); (* output column *)
Vlq.Base64.encode map (if_ - !prev_if); (* sources index *)
Vlq.Base64.encode map (il - !prev_il); (* input row *)
Vlq.Base64.encode map (ic - !prev_ic); (* input column *)
Buffer.add_char map ',';
prev_if := if_; prev_ol := ol; prev_oc := oc; prev_il := il; prev_ic := ic; incr segs
in
let module E = struct
(* Generic values *)
let u8 i = put s (Char.chr (i land 0xff))
let u16 i = u8 (i land 0xff); u8 (i lsr 8)
let u32 i =
Int32.(u16 (to_int (logand i 0xffffl));
u16 (to_int (shift_right i 16)))
let u64 i =
Int64.(u32 (to_int32 (logand i 0xffffffffL));
u32 (to_int32 (shift_right i 32)))
let rec vu64 i =
let b = Int64.(to_int (logand i 0x7fL)) in
if 0L <= i && i < 128L then u8 b
else (u8 (b lor 0x80); vu64 (Int64.shift_right_logical i 7))
let rec vs64 i =
let b = Int64.(to_int (logand i 0x7fL)) in
if -64L <= i && i < 64L then u8 b
else (u8 (b lor 0x80); vs64 (Int64.shift_right i 7))
let vu32 i = vu64 Int64.(logand (of_int32 i) 0xffffffffL)
let vs7 i = vs64 (Int64.of_int i)
let vs32 i = vs64 (Int64.of_int32 i)
let vs33 i = vs64 (Wasm.I64_convert.extend_i32_s i)
let f32 x = u32 (Wasm.F32.to_bits x)
let f64 x = u64 (Wasm.F64.to_bits x)
let flag b i = if b then 1 lsl i else 0
let len i =
if Int32.to_int (Int32.of_int i) <> i then
Code.error Wasm.Source.no_region
"cannot encode length with more than 32 bit";
vu32 (Int32.of_int i)
let string bs = len (String.length bs); put_string s bs
let name n = string (Lib.Utf8.encode n)
let list f xs = List.iter f xs
let opt f xo = Option.iter f xo
let vec_by l f xs = l (List.length xs); list f xs
let vec f xs = vec_by len f xs
let gap32 () = let p = pos s in u32 0l; u8 0; p
let patch_gap32 p n =
assert (n <= 0x0fff_ffff); (* Strings cannot excess 2G anyway *)
let lsb i = Char.chr (i land 0xff) in
patch s p (lsb (n lor 0x80));
patch s (p + 1) (lsb ((n lsr 7) lor 0x80));
patch s (p + 2) (lsb ((n lsr 14) lor 0x80));
patch s (p + 3) (lsb ((n lsr 21) lor 0x80));
patch s (p + 4) (lsb (n lsr 28))
(* Types *)
open Types
let value_type = function
| I32Type -> vs7 (-0x01)
| I64Type -> vs7 (-0x02)
| F32Type -> vs7 (-0x03)
| F64Type -> vs7 (-0x04)
let elem_type = function
| FuncRefType -> vs7 (-0x10)
let stack_type = vec value_type
let func_type = function
| FuncType (ins, out) -> vs7 (-0x20); stack_type ins; stack_type out
let limits vu {min; max} it =
let flags = flag (max <> None) 0 + flag (it = I64IndexType) 2 in
u8 flags; vu min; opt vu max
let table_type = function
| TableType (lim, t) -> elem_type t; limits vu32 lim I32IndexType
let memory_type = function
| MemoryType (lim, it) -> limits vu64 lim it
let mutability = function
| Immutable -> u8 0
| Mutable -> u8 1
let global_type = function
| GlobalType (t, mut) -> value_type t; mutability mut
(* Expressions *)
open Wasm.Source
open Ast
open Values
let op n = u8 n
let end_ () = op 0x0b
let memop {align; offset; _} = vu32 (Int32.of_int align); vu64 offset
let var x = vu32 x.it
let block_type = function
| VarBlockType x -> vs33 x.it
| ValBlockType None -> vs7 (-0x40)
| ValBlockType (Some t) -> value_type t
let rec instr noting e =
if e.at <> no_region then add_to_map e.at.left.file e.at.left.line e.at.left.column 0 (pos s);
noting e;
let instr = instr noting in
match e.it with
| Meta TagClose -> close_dwarf true
| Meta (StatementDelimiter left) ->
modif statement_positions (Instrs.add (pos s, left))
| Meta (Tag (r, t, attrs_tags)) ->
let tags, attrs = List.partition (function Tag _ | Grouped _ -> true | _ -> false) attrs_tags in
extract_dwarf r t attrs;
List.iter (fun t -> instr { e with it = (Meta t) }) tags
| Meta (Grouped []) -> ()
| Meta (Grouped (late :: former)) ->
instr { e with it = Meta (Grouped former) };
instr { e with it = Meta late }
| Meta _ -> assert false
| Unreachable -> op 0x00
| Nop -> op 0x01
| Block (bt, es) -> op 0x02; block_type bt; list instr es; end_ ()
| Loop (bt, es) -> op 0x03; block_type bt; list instr es; end_ ()
| If (bt, es1, es2) ->
op 0x04; block_type bt; list instr es1;
if es2 <> [] then op 0x05;
list instr es2; end_ ()
| Br x -> op 0x0c; var x
| BrIf x -> op 0x0d; var x
| BrTable (xs, x) -> op 0x0e; vec var xs; var x
| Return -> op 0x0f
| Call x -> op 0x10; var x
| CallIndirect (x, y) -> op 0x11; var y; var x
| Drop -> op 0x1a
| Select -> op 0x1b
| LocalGet x -> op 0x20; var x
| LocalSet x -> op 0x21; var x
| LocalTee x -> op 0x22; var x
| GlobalGet x -> op 0x23; var x
| GlobalSet x -> op 0x24; var x
| Load ({ty = I32Type; sz = None; _} as mo) -> op 0x28; memop mo
| Load ({ty = I64Type; sz = None; _} as mo) -> op 0x29; memop mo
| Load ({ty = F32Type; sz = None; _} as mo) -> op 0x2a; memop mo
| Load ({ty = F64Type; sz = None; _} as mo) -> op 0x2b; memop mo
| Load ({ty = I32Type; sz = Some (Pack8, SX); _} as mo) ->
op 0x2c; memop mo
| Load ({ty = I32Type; sz = Some (Pack8, ZX); _} as mo) ->
op 0x2d; memop mo
| Load ({ty = I32Type; sz = Some (Pack16, SX); _} as mo) ->
op 0x2e; memop mo
| Load ({ty = I32Type; sz = Some (Pack16, ZX); _} as mo) ->
op 0x2f; memop mo
| Load {ty = I32Type; sz = Some (Pack32, _); _} ->
assert false
| Load ({ty = I64Type; sz = Some (Pack8, SX); _} as mo) ->
op 0x30; memop mo
| Load ({ty = I64Type; sz = Some (Pack8, ZX); _} as mo) ->
op 0x31; memop mo
| Load ({ty = I64Type; sz = Some (Pack16, SX); _} as mo) ->
op 0x32; memop mo
| Load ({ty = I64Type; sz = Some (Pack16, ZX); _} as mo) ->
op 0x33; memop mo
| Load ({ty = I64Type; sz = Some (Pack32, SX); _} as mo) ->
op 0x34; memop mo
| Load ({ty = I64Type; sz = Some (Pack32, ZX); _} as mo) ->
op 0x35; memop mo
| Load {ty = F32Type | F64Type; sz = Some _; _} ->
assert false
| Store ({ty = I32Type; sz = None; _} as mo) -> op 0x36; memop mo
| Store ({ty = I64Type; sz = None; _} as mo) -> op 0x37; memop mo
| Store ({ty = F32Type; sz = None; _} as mo) -> op 0x38; memop mo
| Store ({ty = F64Type; sz = None; _} as mo) -> op 0x39; memop mo
| Store ({ty = I32Type; sz = Some Pack8; _} as mo) -> op 0x3a; memop mo
| Store ({ty = I32Type; sz = Some Pack16; _} as mo) -> op 0x3b; memop mo
| Store {ty = I32Type; sz = Some Pack32; _} -> assert false
| Store ({ty = I64Type; sz = Some Pack8; _} as mo) -> op 0x3c; memop mo
| Store ({ty = I64Type; sz = Some Pack16; _} as mo) -> op 0x3d; memop mo
| Store ({ty = I64Type; sz = Some Pack32; _} as mo) -> op 0x3e; memop mo
| Store {ty = F32Type | F64Type; sz = Some _; _} -> assert false
| MemorySize -> op 0x3f; u8 0x00
| MemoryGrow -> op 0x40; u8 0x00
(* Manual extension for bulk-memory operations *)
| MemoryFill -> op 0xfc; vu32 0x0bl; u8 0x00
| MemoryCopy -> op 0xfc; vu32 0x0al; u8 0x00; u8 0x00
(* End of manual extension *)
(* Manual extension for passive data segments *)
| MemoryInit x -> op 0xfc; vu32 0x08l; var x; u8 0x00
(* End of manual extension *)
| Const {it = I32 c; _} -> op 0x41; vs32 c
| Const {it = I64 c; _} -> op 0x42; vs64 c
| Const {it = F32 c; _} -> op 0x43; f32 c
| Const {it = F64 c; _} -> op 0x44; f64 c
| Test (I32 I32Op.Eqz) -> op 0x45
| Test (I64 I64Op.Eqz) -> op 0x50
| Test (F32 _) -> assert false
| Test (F64 _) -> assert false
| Compare (I32 I32Op.Eq) -> op 0x46
| Compare (I32 I32Op.Ne) -> op 0x47
| Compare (I32 I32Op.LtS) -> op 0x48
| Compare (I32 I32Op.LtU) -> op 0x49
| Compare (I32 I32Op.GtS) -> op 0x4a
| Compare (I32 I32Op.GtU) -> op 0x4b
| Compare (I32 I32Op.LeS) -> op 0x4c
| Compare (I32 I32Op.LeU) -> op 0x4d
| Compare (I32 I32Op.GeS) -> op 0x4e
| Compare (I32 I32Op.GeU) -> op 0x4f
| Compare (I64 I64Op.Eq) -> op 0x51
| Compare (I64 I64Op.Ne) -> op 0x52
| Compare (I64 I64Op.LtS) -> op 0x53
| Compare (I64 I64Op.LtU) -> op 0x54
| Compare (I64 I64Op.GtS) -> op 0x55
| Compare (I64 I64Op.GtU) -> op 0x56
| Compare (I64 I64Op.LeS) -> op 0x57
| Compare (I64 I64Op.LeU) -> op 0x58
| Compare (I64 I64Op.GeS) -> op 0x59
| Compare (I64 I64Op.GeU) -> op 0x5a
| Compare (F32 F32Op.Eq) -> op 0x5b
| Compare (F32 F32Op.Ne) -> op 0x5c
| Compare (F32 F32Op.Lt) -> op 0x5d
| Compare (F32 F32Op.Gt) -> op 0x5e
| Compare (F32 F32Op.Le) -> op 0x5f
| Compare (F32 F32Op.Ge) -> op 0x60
| Compare (F64 F64Op.Eq) -> op 0x61
| Compare (F64 F64Op.Ne) -> op 0x62
| Compare (F64 F64Op.Lt) -> op 0x63
| Compare (F64 F64Op.Gt) -> op 0x64
| Compare (F64 F64Op.Le) -> op 0x65
| Compare (F64 F64Op.Ge) -> op 0x66
| Unary (I32 I32Op.Clz) -> op 0x67
| Unary (I32 I32Op.Ctz) -> op 0x68
| Unary (I32 I32Op.Popcnt) -> op 0x69
| Unary (I32 (I32Op.ExtendS Pack8)) -> op 0xc0
| Unary (I32 (I32Op.ExtendS Pack16)) -> op 0xc1
| Unary (I32 (I32Op.ExtendS Pack32)) -> assert false
| Unary (I64 I64Op.Clz) -> op 0x79
| Unary (I64 I64Op.Ctz) -> op 0x7a
| Unary (I64 I64Op.Popcnt) -> op 0x7b
| Unary (I64 (I64Op.ExtendS Pack8)) -> op 0xc2
| Unary (I64 (I64Op.ExtendS Pack16)) -> op 0xc3
| Unary (I64 (I64Op.ExtendS Pack32)) -> op 0xc4
| Unary (F32 F32Op.Abs) -> op 0x8b
| Unary (F32 F32Op.Neg) -> op 0x8c
| Unary (F32 F32Op.Ceil) -> op 0x8d
| Unary (F32 F32Op.Floor) -> op 0x8e
| Unary (F32 F32Op.Trunc) -> op 0x8f
| Unary (F32 F32Op.Nearest) -> op 0x90
| Unary (F32 F32Op.Sqrt) -> op 0x91
| Unary (F64 F64Op.Abs) -> op 0x99
| Unary (F64 F64Op.Neg) -> op 0x9a
| Unary (F64 F64Op.Ceil) -> op 0x9b
| Unary (F64 F64Op.Floor) -> op 0x9c
| Unary (F64 F64Op.Trunc) -> op 0x9d
| Unary (F64 F64Op.Nearest) -> op 0x9e
| Unary (F64 F64Op.Sqrt) -> op 0x9f
| Binary (I32 I32Op.Add) -> op 0x6a
| Binary (I32 I32Op.Sub) -> op 0x6b
| Binary (I32 I32Op.Mul) -> op 0x6c
| Binary (I32 I32Op.DivS) -> op 0x6d
| Binary (I32 I32Op.DivU) -> op 0x6e
| Binary (I32 I32Op.RemS) -> op 0x6f
| Binary (I32 I32Op.RemU) -> op 0x70
| Binary (I32 I32Op.And) -> op 0x71
| Binary (I32 I32Op.Or) -> op 0x72
| Binary (I32 I32Op.Xor) -> op 0x73
| Binary (I32 I32Op.Shl) -> op 0x74
| Binary (I32 I32Op.ShrS) -> op 0x75
| Binary (I32 I32Op.ShrU) -> op 0x76
| Binary (I32 I32Op.Rotl) -> op 0x77
| Binary (I32 I32Op.Rotr) -> op 0x78
| Binary (I64 I64Op.Add) -> op 0x7c
| Binary (I64 I64Op.Sub) -> op 0x7d
| Binary (I64 I64Op.Mul) -> op 0x7e
| Binary (I64 I64Op.DivS) -> op 0x7f
| Binary (I64 I64Op.DivU) -> op 0x80
| Binary (I64 I64Op.RemS) -> op 0x81
| Binary (I64 I64Op.RemU) -> op 0x82
| Binary (I64 I64Op.And) -> op 0x83
| Binary (I64 I64Op.Or) -> op 0x84
| Binary (I64 I64Op.Xor) -> op 0x85
| Binary (I64 I64Op.Shl) -> op 0x86
| Binary (I64 I64Op.ShrS) -> op 0x87
| Binary (I64 I64Op.ShrU) -> op 0x88
| Binary (I64 I64Op.Rotl) -> op 0x89
| Binary (I64 I64Op.Rotr) -> op 0x8a
| Binary (F32 F32Op.Add) -> op 0x92
| Binary (F32 F32Op.Sub) -> op 0x93
| Binary (F32 F32Op.Mul) -> op 0x94
| Binary (F32 F32Op.Div) -> op 0x95
| Binary (F32 F32Op.Min) -> op 0x96
| Binary (F32 F32Op.Max) -> op 0x97
| Binary (F32 F32Op.CopySign) -> op 0x98
| Binary (F64 F64Op.Add) -> op 0xa0
| Binary (F64 F64Op.Sub) -> op 0xa1
| Binary (F64 F64Op.Mul) -> op 0xa2
| Binary (F64 F64Op.Div) -> op 0xa3
| Binary (F64 F64Op.Min) -> op 0xa4
| Binary (F64 F64Op.Max) -> op 0xa5
| Binary (F64 F64Op.CopySign) -> op 0xa6
| Convert (I32 I32Op.ExtendSI32) -> assert false
| Convert (I32 I32Op.ExtendUI32) -> assert false
| Convert (I32 I32Op.WrapI64) -> op 0xa7
| Convert (I32 I32Op.TruncSF32) -> op 0xa8
| Convert (I32 I32Op.TruncUF32) -> op 0xa9
| Convert (I32 I32Op.TruncSF64) -> op 0xaa
| Convert (I32 I32Op.TruncUF64) -> op 0xab
| Convert (I32 I32Op.TruncSatSF32) -> op 0xfc; op 0x00
| Convert (I32 I32Op.TruncSatUF32) -> op 0xfc; op 0x01
| Convert (I32 I32Op.TruncSatSF64) -> op 0xfc; op 0x02
| Convert (I32 I32Op.TruncSatUF64) -> op 0xfc; op 0x03
| Convert (I32 I32Op.ReinterpretFloat) -> op 0xbc
| Convert (I64 I64Op.ExtendSI32) -> op 0xac
| Convert (I64 I64Op.ExtendUI32) -> op 0xad
| Convert (I64 I64Op.WrapI64) -> assert false
| Convert (I64 I64Op.TruncSF32) -> op 0xae
| Convert (I64 I64Op.TruncUF32) -> op 0xaf
| Convert (I64 I64Op.TruncSF64) -> op 0xb0
| Convert (I64 I64Op.TruncUF64) -> op 0xb1
| Convert (I64 I64Op.TruncSatSF32) -> op 0xfc; op 0x04
| Convert (I64 I64Op.TruncSatUF32) -> op 0xfc; op 0x05
| Convert (I64 I64Op.TruncSatSF64) -> op 0xfc; op 0x06
| Convert (I64 I64Op.TruncSatUF64) -> op 0xfc; op 0x07
| Convert (I64 I64Op.ReinterpretFloat) -> op 0xbd
| Convert (F32 F32Op.ConvertSI32) -> op 0xb2
| Convert (F32 F32Op.ConvertUI32) -> op 0xb3
| Convert (F32 F32Op.ConvertSI64) -> op 0xb4
| Convert (F32 F32Op.ConvertUI64) -> op 0xb5
| Convert (F32 F32Op.PromoteF32) -> assert false
| Convert (F32 F32Op.DemoteF64) -> op 0xb6
| Convert (F32 F32Op.ReinterpretInt) -> op 0xbe
| Convert (F64 F64Op.ConvertSI32) -> op 0xb7
| Convert (F64 F64Op.ConvertUI32) -> op 0xb8
| Convert (F64 F64Op.ConvertSI64) -> op 0xb9
| Convert (F64 F64Op.ConvertUI64) -> op 0xba
| Convert (F64 F64Op.PromoteF32) -> op 0xbb
| Convert (F64 F64Op.DemoteF64) -> assert false
| Convert (F64 F64Op.ReinterpretInt) -> op 0xbf
(* Custom encodings for emulating stable-memory, special cases
of MemorySize, MemoryGrow and MemoryCopy
requiring wasm features bulk-memory and multi-memory
*)
| StableSize -> op 0x3f; u8 0x01
| StableGrow -> op 0x40; u8 0x01
| StableRead -> op 0xfc; vu32 0x0al; u8 0x00; u8 0x01
| StableWrite -> op 0xfc; vu32 0x0al; u8 0x01; u8 0x00
let const c =
list (instr ignore) c.it; end_ ()
(* Sections *)
let section id f x needed =
if needed then begin
u8 id;
let g = gap32 () in
let p = pos s in
f x;
patch_gap32 g (pos s - p)
end
let custom_section name f x needed =
section 0 (fun x ->
string name;
f x
) x needed
(* Type section *)
let type_ t = func_type t.it
let type_section ts =
section 1 (vec type_) ts (ts <> [])
(* Import section *)
let import_desc d =
match d.it with
| FuncImport x -> u8 0x00; var x
| TableImport t -> u8 0x01; table_type t
| MemoryImport t -> u8 0x02; memory_type t
| GlobalImport t -> u8 0x03; global_type t
let import im =
let {module_name; item_name; idesc} = im.it in
name module_name; name item_name; import_desc idesc
let import_section ims =
section 2 (vec import) ims (ims <> [])
(* Function section *)
let func f = var f.it.ftype
let func_section fs =
section 3 (vec func) fs (fs <> [])
(* Table section *)
let table tab =
let {ttype} = tab.it in
table_type ttype
let table_section tabs =
section 4 (vec table) tabs (tabs <> [])
(* Memory section *)
let memory mem =
let {mtype} = mem.it in
memory_type mtype
let memory_section mems =
section 5 (vec memory) mems (mems <> [])
(* Global section *)
let global g =
let {gtype; value} = g.it in
global_type gtype; const value
let global_section gs =
section 6 (vec global) gs (gs <> [])
(* Export section *)
let export_desc d =
match d.it with
| FuncExport x -> u8 0; var x
| TableExport x -> u8 1; var x
| MemoryExport x -> u8 2; var x
| GlobalExport x -> u8 3; var x
let export ex =
let {name = n; edesc} = ex.it in
name n; export_desc edesc
let export_section exs =
section 7 (vec export) exs (exs <> [])
(* Start section *)
let start_section xo =
section 8 (opt var) xo (xo <> None)
(* Code section *)
let compress ts =
let combine t = function
| (t', n) :: ts when t = t' -> (t, n + 1) :: ts
| ts -> (t, 1) :: ts
in List.fold_right combine ts []
let local (t, n) = len n; value_type t
let (here_dir, asset_dir) = (0, 1) (* reversed indices in dir_names, below *)
let source_names =
ref [ "prelude", (Promise.make (), asset_dir)
; "prim", (Promise.make (), asset_dir)
; "rts.wasm", (Promise.make (), asset_dir) ] (* make these appear last in .debug_line file_name_entries *)
let dir_names = (* ditto, but reversed: 6.2.4.1 Standard Content Descriptions *)
ref [ "<moc-asset>", (Promise.make (), asset_dir)
; Filename.dirname "", (Promise.make (), here_dir) ]
let source_path_indices = ref (List.map (fun (p, (_, i)) -> p, i) !source_names)
let add_source_name =
let source_adder dir_index _ = Promise.make (), dir_index in
let add_source_path_index (_, _) = function
| "" -> assert false
| str ->
ignore (add_string (function [] -> assert false | (_, i) :: _ -> i + 1) source_path_indices str) in
function
| "" -> ()
| ("prelude" | "prim" | "rts.wasm") as asset ->
add_source_path_index (add_string (source_adder asset_dir) source_names asset) asset
| path ->
let dir, basename = Filename.(dirname path, basename path) in
let _, dir_index = add_string (function [] -> assert false | (_, (_, i)) :: _ -> Promise.make (), i + 1) dir_names dir in
let promise = add_string (source_adder dir_index) source_names basename in
add_source_path_index promise path
let code f =
let {locals; body; _} = f.it in
let g = gap32 () in
let p = pos s in
vec local (compress locals);
let instr_notes = ref Instrs.empty in
let note i =
if not (is_dwarf_like i.it) then
(modif instr_notes (Instrs.add (pos s, i.at.left));
ignore (add_source_name i.at.left.file)
) in
list (instr note) body;
modif instr_notes (Instrs.add (pos s, f.at.right));
ignore (add_source_name f.at.right.file);
end_ ();
incr sequence_number;
let sequence_end = pos s in
patch_gap32 g (sequence_end - p);
modif sequence_bounds (DW_Sequence.add (p, !instr_notes, sequence_end))
let code_section fs =
section 10 (fun fs -> code_section_start := pos s; vec code fs) fs (fs <> [])
(* Element section *)
let segment dat seg =
let {index; offset; init} = seg.it in
var index; const offset; dat init
let table_segment seg =
segment (vec var) seg
let elem_section elems =
section 9 (vec table_segment) elems (elems <> [])
(* Manual extension for passive data segments *)
(* Data section *)
let data seg =
let {dinit; dmode} = seg.it in
match dmode.it with
| Passive ->
vu32 0x01l; string dinit
| Active {index; offset} when index.it = 0l ->
vu32 0x00l; const offset; string dinit
| Active {index; offset} ->
vu32 0x02l; var index; const offset; string dinit
| Declarative ->
failwith "illegal declarative data segment"
let data_section datas =
section 11 (vec data) datas (datas <> [])
(* Data count section *)
let data_count_section datas m =
section 12 len (List.length datas) (datas <> [])
(* End of manual extension *)
(* sourceMappingURL section *)
let source_mapping_url_section smu =
match smu with
| Some smu -> custom_section "sourceMappingURL" string smu true
| None -> ()
(* Name section *)
let assoc_list : 'a. ('a -> unit) -> (int32 * 'a) list -> unit = fun f xs ->
vec (fun (li, x) -> vu32 li; f x)
(List.sort (fun (i1,_) (i2,_) -> compare i1 i2) xs)
let name_section ns =
let name_section_body (ns : name_section) =
(* module name section *)
section 0 (opt string) ns.module_ (ns.module_ <> None);
(* function names section *)
section 1 (assoc_list string) ns.function_names (ns.function_names <> []);
(* locals names section *)
section 2 (assoc_list (assoc_list string)) ns.locals_names (ns.locals_names <> []) in
custom_section "name" name_section_body ns
(ns.module_ <> None || ns.function_names <> [] || ns.locals_names <> [])
let icp_custom_section name f opt =
match opt with
| None -> ()
| Some (is_public, x) ->
section 0 (fun x ->
string ("icp:"^ (if is_public then "public " else "private ") ^ name);
f x
) x true
(* Motoko custom section *)
let motoko_section_body labels =
section 0 (vec string) labels (labels <> [])
let utf8 bs =
ignore (Lib.Utf8.decode bs); (* assert well-formedness *)
put_string s bs
let motoko_sections motoko =
icp_custom_section "motoko:stable-types" utf8 motoko.stable_types;
icp_custom_section "motoko:compiler" utf8 motoko.compiler;
custom_section "motoko" motoko_section_body motoko.labels (motoko.labels <> []) (* TODO: make an icp_section *)
let enhanced_orthogonal_persistence_section version =
icp_custom_section "enhanced-orthogonal-persistence" utf8 version
let candid_sections candid =
icp_custom_section "candid:service" utf8 candid.service;
icp_custom_section "candid:args" utf8 candid.args
let wasm_features_section wasm_features =
let text = String.concat "," wasm_features in
custom_section "wasm_features" utf8 text (text <> "")
let uleb128 n = vu64 (Int64.of_int n)
let sleb128 n = vs64 (Int64.of_int n)
let close_section () = u8 0x00
let write16 = Buffer.add_int16_le s.buf
let write32 i = Buffer.add_int32_le s.buf (Int32.of_int i)
let zero_terminated str = put_string s str; u8 0
let vec_uleb128 el = vec_by uleb128 el
let writeBlock1 str = let len = String.length str in assert (len < 256); u8 len; put_string s str
let writeBlockLEB str = uleb128 (String.length str); put_string s str
let dw_gap32 () = let p = pos s in write32 0x0; p
let dw_patch_gap32 p n =
let lsb i = Char.chr (i land 0xff) in
patch s p (lsb n);
patch s (p + 1) (lsb (n lsr 8));
patch s (p + 2) (lsb (n lsr 16));
patch s (p + 3) (lsb (n lsr 24))
let dw_patches = ref Fun.id
let debug_abbrev_section () =
let tag (t, ch, kvs) =
uleb128 (t land 0xFFFF); u8 ch;
assert (kvs <> []); (* these run risk of dead-code elimination *)
List.iter (fun (k, v) -> uleb128 k; uleb128 v) kvs in
let abbrev i abs = uleb128 (i + 1); tag abs; close_section (); close_section () in
let section_body abs = List.iteri abbrev abs; close_section () in
custom_section ".debug_abbrev" section_body Abbreviation.abbreviations true
(* dw_FORM writers *)
let writeForm : int -> die -> unit =
let open Dwarf5 in
function
| f when dw_FORM_strp = f ->
begin function
| StringAttribute (attr, str) -> write32 (add_dwarf_string str)
| _ -> failwith "dw_FORM_strp"
end
| f when dw_FORM_data1 = f ->
begin function
| IntAttribute (attr, i) -> u8 i
| _ -> failwith "dw_FORM_data1"
end
| f when dw_FORM_data2 = f ->
begin function
| IntAttribute (attr, i) -> write16 i
| _ -> failwith "dw_FORM_data2"
end
| f when dw_FORM_data4 = f ->
begin function
| IntAttribute (attr, i) -> write32 i
| _ -> failwith "dw_FORM_data4"
end
| f when dw_FORM_addr = f ->
begin function
| IntAttribute (attr, i) -> write32 i
| _ -> failwith "dw_FORM_addr"
end
| f when dw_FORM_addrx = f ->
begin function
| IntAttribute (attr, i) -> uleb128 i
| _ -> failwith "dw_FORM_addrx"
end
| f when dw_FORM_ref4 = f ->
begin function
| IntAttribute (attr, i) ->
(* See Note [placeholder promises for typedefs] *)
let placeholder_promise = References.find i !dw_references in
assert (Promise.is_fulfilled placeholder_promise);
let forward_ref = Promise.value placeholder_promise in
let offset_promise = References.find forward_ref !dw_references in
if Promise.is_fulfilled offset_promise
then write32 (Promise.value offset_promise)
else dw_patches :=
(fun gap ps () ->
ps ();
dw_patch_gap32 gap (Promise.value offset_promise)
) (dw_gap32 ()) !dw_patches
| _ -> failwith "dw_FORM_ref_ref4"
end
| f when dw_FORM_ref_udata = f ->
begin function
| IntAttribute (attr, i) ->
uleb128 (Promise.value (References.find i !dw_references))
| _ -> failwith "dw_FORM_ref_udata"
end
| f when dw_FORM_sec_offset = f ->
begin function
| IntAttribute (attr, i) -> write32 i
| _ -> failwith "dw_FORM_sec_offset"
end
| f when dw_FORM_block1 = f ->
begin function
| StringAttribute (attr, str) -> writeBlock1 str
| _ -> failwith "dw_FORM_block1"
end
| f when dw_FORM_exprloc = f ->
begin function
| StringAttribute (attr, str) -> writeBlockLEB str
| _ -> failwith "dw_FORM_exprloc"
end
| f when dw_FORM_flag = f ->
begin function
| IntAttribute (attr, b) -> u8 b
| _ -> failwith "dw_FORM_flag"
end
| f when dw_FORM_flag_present = f ->
begin function
| IntAttribute (attr, 0) -> failwith "dw_FORM_flag_present with false"
| IntAttribute (attr, _) -> ()
| _ -> failwith "dw_FORM_flag_present"
end
| _ -> failwith "cannot write form"
let info_section_start = ref 0
let rec writeTag at_toplevel = function
| Tag (r, t, contentsRevd) ->
begin match r with
| Some refi ->
Promise.fulfill (References.find refi !dw_references) (pos s - !info_section_start)
| None -> assert (t <> Dwarf5.dw_TAG_base_type)
end;
(* we have to be careful to only reference tags already written,
so maintain creation order *)
let ref_priority a b = match a, b with
| Tag (Some m, _, _), Tag (Some n, _, _) -> compare n m
| _, Tag (Some _, _, _) -> -1
| Tag (Some _, _, _), _ -> 1
| _ -> 0 in
let contents = List.rev (if at_toplevel then List.stable_sort ref_priority contentsRevd else contentsRevd) in
let wanted_tag (t', _, _) = t = t' in
let (_, has_children, forms) = List.find wanted_tag Abbreviation.abbreviations in
let rec pairing (attr, form) = function
| Tag _ | TagClose | StatementDelimiter _ | Grouped _ -> failwith "Attribute expected"
| FutureAttribute f ->
pairing (attr, form) (f ())
| StringAttribute (a, path0) when a = Dwarf5.dw_AT_decl_file ->
let path = if path0 = "" then "prim" else path0 in
if attr <> a then Printf.printf "DATA1 attr: 0x%x = a: 0x%x (in TAG 0x%x) PATH: %s ULT: (%s, %d)\n" attr a t path (fst (List.hd !source_path_indices)) (snd (List.hd !source_path_indices));
assert (attr = a);
writeForm form (IntAttribute (a, List.(snd (hd !source_path_indices) - assoc path !source_path_indices)))
| IntAttribute (a, _) as art ->
if attr <> a then Printf.printf "attr: 0x%x = a: 0x%x (in TAG 0x%x)\n" attr a t;
assert (attr = a);
writeForm form art
| StringAttribute (a, _) as art -> assert (attr = a); writeForm form art
| OffsetAttribute _ -> failwith "too late to resolve OffsetAttribute" in
let rec indexOf cnt = function
| h :: t when wanted_tag h -> cnt
| _ :: t -> indexOf (cnt + 1) t
| _ -> failwith "not encountered" in
uleb128 (indexOf 1 Abbreviation.abbreviations);
let nested_tags, attrs = List.partition (function Tag _ -> true | _ -> false) contents in
List.iter2 pairing forms attrs;
List.iter (writeTag false) nested_tags;
if has_children <> 0 then close_section ()
| _ -> failwith "Tag expected"
let unit f =
let g = dw_gap32 () in (* unit_length *)
let p = pos s in
f g; dw_patch_gap32 g (pos s - p)
let debug_info_section () =
let section_body abs =
unit(fun info_start ->
write16 0x0005; (* version *)
u8 Dwarf5.dw_UT_compile; (* unit_type *)
u8 4; (* address_size *)
write32 0x0000; (* debug_abbrev_offset *)
info_section_start := info_start;
match !dwarf_tags with
| [toplevel] -> writeTag true toplevel
| _ -> failwith "expected one toplevel tag"
);
!dw_patches () in
let relevant ts = ts <> [Tag (None, 0, [])] in
custom_section ".debug_info" section_body dwarf_tags (relevant !dwarf_tags)
let debug_strings_section dss =
let rec debug_strings_section_body = function
| [] -> ()
| (h, _) :: t -> debug_strings_section_body t; zero_terminated h
in
custom_section ".debug_str" debug_strings_section_body dss (dss <> [])
let debug_addr_section seqs =
let debug_addr_section_body seqs =
unit(fun start ->
write16 0x0005; (* version *)
u8 4; (* addr_size *)
u8 0; (* segment_selector_size *)
let write_addr (st, _, _) =
let rel addr = addr - !code_section_start in
write32 (rel st)
in
DW_Sequence.iter write_addr seqs;
)
in
custom_section ".debug_addr" debug_addr_section_body seqs (not (DW_Sequence.is_empty seqs))
(* 7.28 Range List Table *)
let debug_rnglists_section sequence_bounds =
let index = ref 0 in
let debug_rnglists_section_body () =
unit(fun start ->
write16 0x0005; (* version *)
u8 4; (* address_size *)
u8 0; (* segment_selector_size *)
write32 0; (* offset_entry_count *)
Promise.fulfill rangelists (pos s - start);
DW_Sequence.iter (fun (st, _, en) ->
u8 Dwarf5.dw_RLE_startx_length;
uleb128 !index;
incr index;
uleb128 (en - st))
sequence_bounds;
u8 Dwarf5.dw_RLE_end_of_list;
(* extract the subprogram sizes to an array *)
Promise.fulfill subprogram_sizes (Array.of_seq (Seq.map (fun (st, _, en) -> en - st) (DW_Sequence.to_seq sequence_bounds)))
);
in
custom_section ".debug_rnglists" debug_rnglists_section_body () true
(* Debug strings for line machine section, used by DWARF5: "6.2.4 The Line Number Program Header" *)
let debug_line_str_section () =
let debug_line_strings_section_body (dirs, sources) =
let start = pos s in
let rec strings = function
| [] -> ()
| (h, (p, _)) :: t ->
Promise.fulfill p (pos s - start);
zero_terminated h;
strings t in
strings dirs;
strings sources in
custom_section ".debug_line_str" debug_line_strings_section_body (!dir_names, !source_names) true
(* Debug line machine section, see DWARF5: "6.2 Line Number Information" *)
let debug_line_section fs =
let debug_line_section_body () =
unit(fun start ->
(* see "6.2.4 The Line Number Program Header" *)
write16 0x0005;
u8 4;
u8 0; (* segment_selector_size *)
unit(fun _ ->
u8 1; (* min_inst_length *)
u8 1; (* max_ops_per_inst *)
u8 (if Dwarf5.Machine.default_is_stmt then 1 else 0); (* default_is_stmt *)
u8 0; (* line_base *)
u8 12; (* line_range *)
u8 13; (* opcode_base *)
let open List in
(* DW_LNS_copy .. DW_LNS_set_isa usage *)
iter u8 [0; 1; 1; 1; 1; 0; 0; 0; 1; 0; 0; 1];
let format (l, f) = uleb128 l; uleb128 f in
let vec_format = vec_by u8 format in
(* directory_entry_format_count, directory_entry_formats *)
vec_format Dwarf5.[dw_LNCT_path, dw_FORM_line_strp];
(* directories_count, directories *)
vec_uleb128 write32 (rev_map (fun (_, (p, _)) -> Promise.value p) !dir_names);
(* file_name_entry_format_count, file_name_entry_formats *)
vec_format Dwarf5.[dw_LNCT_path, dw_FORM_line_strp; dw_LNCT_directory_index, dw_FORM_udata];
(* The first entry in the sequence is the primary source file whose file name exactly
matches that given in the DW_AT_name attribute in the compilation unit debugging
information entry. This is ensured by the heuristics, that the last noted source file
will be placed at position 0 in the table *)
vec_uleb128
(fun (pos, indx) -> write32 pos; uleb128 indx)
(map (fun (_, (p, dir_indx)) -> Promise.value p, dir_indx) !source_names);
);
(* build the statement loc -> addr map *)
let statement_positions = !statement_positions in
let module StmtsAt = Map.Make (struct type t = Wasm.Source.pos let compare = compare end) in
let statements_at = StmtsAt.of_seq (Seq.map (fun (k, v) -> v, k) (Instrs.to_seq statement_positions)) in
let is_statement_at (addr, loc) =
match StmtsAt.find_opt loc statements_at with
| Some addr' when addr = addr' -> true
| _ -> false in
(* generate the line section *)
let code_start = !code_section_start in
let rel addr = addr - code_start in
let source_indices = !source_path_indices in
let mapping epi (addr, {file; line; column} as loc) : Dwarf5.Machine.state =
let file' = List.(snd (hd source_indices) - assoc (if file = "" then "prim" else file) source_indices) in
let stmt = Instrs.mem loc statement_positions || is_statement_at loc (* FIXME TODO: why ||? *) in
let addr' = rel addr in
Dwarf5.Machine.{ ip = addr'; loc = { file = file'; line; col = column + 1 }; disc = 0; stmt; bb = false; mode = if addr' = epi then Epilogue else Regular }
in
let joining (prg, state) state' : int list list * Dwarf5.Machine.state =
(* to avoid quadratic runtime, just collect (cons up) the partial lists here;
later we'll bring it in the right order and flatten *)
Dwarf5.Machine.infer state state' :: prg, state'
in
let sequence (sta, notes, en) =
let start, ending = rel sta, rel en in
let notes_seq = Instrs.to_seq notes in
let open Dwarf5.Machine in
(* Decorate first instr, and prepend start address, non-statement (FIXME: clang says it *is* a statement) *)
let seq_start_state = { start_state with ip = start; stmt = false } in
let states_seq () =
let open Seq in
match map (mapping (ending - 1)) notes_seq () with
| Nil -> failwith "there should be an 'end' instruction!"
| Cons ({ip; _}, _) when ip = start -> failwith "at start already an instruction?"
| Cons (state, _) as front ->
(* override default location from `start_state` *)
let start_state' = { seq_start_state with loc = state.loc } in
(* FIXME (4.11) use `cons` *)
Cons (start_state', fun () -> front)
in
let prg0, _ = Seq.fold_left joining ([], start_state) states_seq in
let prg = List.fold_left (Fun.flip (@)) Dwarf5.[dw_LNS_advance_pc; 1; dw_LNE_end_sequence] prg0 in
write_opcodes u8 uleb128 sleb128 write32 prg
in
DW_Sequence.iter sequence !sequence_bounds
)
in
custom_section ".debug_line" debug_line_section_body () (fs <> [])
(* Module *)
let module_ (em : extended_module) =
let m = em.module_ in
u32 0x6d736100l;
u32 version;
(* no use-case for encoding dylink section yet, but here would be the place *)
assert (em.dylink0 = []);
type_section m.types;
import_section m.imports;
func_section m.funcs;
table_section m.tables;
memory_section m.memories;
global_section m.globals;
export_section m.exports;
start_section m.start;
elem_section m.elems;
data_count_section m.datas m;
code_section m.funcs;
data_section m.datas;
(* other optional sections *)
name_section em.name;
candid_sections em.candid;
motoko_sections em.motoko;
enhanced_orthogonal_persistence_section em.enhanced_orthogonal_persistence;
wasm_features_section em.wasm_features;
source_mapping_url_section em.source_mapping_url;
if !Mo_config.Flags.debug_info then
begin
debug_abbrev_section ();
debug_addr_section !sequence_bounds;
debug_rnglists_section !sequence_bounds;
debug_line_str_section ();
debug_line_section m.funcs;
debug_info_section ();
debug_strings_section !dwarf_strings
end
end
in E.module_ em;
let mappings = Buffer.contents map in
let n = max 0 ((String.length mappings) - 1) in
let json : Yojson.Basic.t = `Assoc [
("version", `Int 3);
("sources", `List ( List.map (fun x -> `String x) !sources ) );
("sourcesContent", `List ( List.map (fun x -> if x = "" then `Null else `String x) !sourcesContent ) );
("mappings", `String (String.sub mappings 0 n) )
] in
(Yojson.Basic.to_string json, to_string s)