1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
(*
This module originated as a copy of interpreter/syntax/ast.ml in the
reference implementation.
Base revision: WebAssembly/spec@a7a1856.
The changes are:
* Manual selective support for bulk-memory operations `memory_copy` and `memory_fill` (WebAssembly/spec@7fa2f20).
* Pseudo-instruction Meta for debug information
* StableMemory, StableGrow, StableRead, StableWrite instructions.
* Support for passive data segments (incl. `MemoryInit`).
* Support for table index in `call_indirect` (reference-types proposal).
The code is otherwise as untouched as possible, so that we can relatively
easily apply diffs from the original code (possibly manually).
*)
(*
* Throughout the implementation we use consistent naming conventions for
* syntactic elements, associated with the types defined here and in a few
* other places:
*
* x : var
* v : value
* e : instr
* f : func
* m : module_
*
* t : value_type
* s : func_type
* c : context / config
*
* These conventions mostly follow standard practice in language semantics.
*)
open Types
open Wasm.Source
(* Operators *)
module IntOp =
struct
type unop = Clz | Ctz | Popcnt | ExtendS of pack_size
type binop = Add | Sub | Mul | DivS | DivU | RemS | RemU
| And | Or | Xor | Shl | ShrS | ShrU | Rotl | Rotr
type testop = Eqz
type relop = Eq | Ne | LtS | LtU | GtS | GtU | LeS | LeU | GeS | GeU
type cvtop = ExtendSI32 | ExtendUI32 | WrapI64
| TruncSF32 | TruncUF32 | TruncSF64 | TruncUF64
| TruncSatSF32 | TruncSatUF32 | TruncSatSF64 | TruncSatUF64
| ReinterpretFloat
end
module FloatOp =
struct
type unop = Neg | Abs | Ceil | Floor | Trunc | Nearest | Sqrt
type binop = Add | Sub | Mul | Div | Min | Max | CopySign
type testop
type relop = Eq | Ne | Lt | Gt | Le | Ge
type cvtop = ConvertSI32 | ConvertUI32 | ConvertSI64 | ConvertUI64
| PromoteF32 | DemoteF64
| ReinterpretInt
end
module I32Op = IntOp
module I64Op = IntOp
module F32Op = FloatOp
module F64Op = FloatOp
type unop = (I32Op.unop, I64Op.unop, F32Op.unop, F64Op.unop) Values.op
type binop = (I32Op.binop, I64Op.binop, F32Op.binop, F64Op.binop) Values.op
type testop = (I32Op.testop, I64Op.testop, F32Op.testop, F64Op.testop) Values.op
type relop = (I32Op.relop, I64Op.relop, F32Op.relop, F64Op.relop) Values.op
type cvtop = (I32Op.cvtop, I64Op.cvtop, F32Op.cvtop, F64Op.cvtop) Values.op
type 'a memop =
{ty : value_type; align : int; offset : Memory.offset; sz : 'a option}
type loadop = (pack_size * extension) memop
type storeop = pack_size memop
(* Expressions *)
type var = int32 phrase
type literal = Values.value phrase
type name = int list
type block_type = VarBlockType of var | ValBlockType of value_type option
type instr = instr' phrase
and instr' =
| Unreachable (* trap unconditionally *)
| Nop (* do nothing *)
| Drop (* forget a value *)
| Select (* branchless conditional *)
| Block of block_type * instr list (* execute in sequence *)
| Loop of block_type * instr list (* loop header *)
| If of block_type * instr list * instr list (* conditional *)
| Br of var (* break to n-th surrounding label *)
| BrIf of var (* conditional break *)
| BrTable of var list * var (* indexed break *)
| Return (* break from function body *)
| Call of var (* call function *)
| CallIndirect of var * var (* call function through table *)
| LocalGet of var (* read local variable *)
| LocalSet of var (* write local variable *)
| LocalTee of var (* write local variable and keep value *)
| GlobalGet of var (* read global variable *)
| GlobalSet of var (* write global variable *)
| Load of loadop (* read memory at address *)
| Store of storeop (* write memory at address *)
| MemorySize (* size of linear memory *)
| MemoryGrow (* grow linear memory *)
(* Manual extension for bulk memory operations *)
| MemoryFill (* fill memory range with value *)
| MemoryCopy (* copy memory ranges *)
(* End of manual extension *)
(* Manual extension for passive data segments *)
| MemoryInit of var (* initialize memory range from segment *)
(* End of manual extension *)
| Const of literal (* constant *)
| Test of testop (* numeric test *)
| Compare of relop (* numeric comparison *)
| Unary of unop (* unary numeric operator *)
| Binary of binop (* binary numeric operator *)
| Convert of cvtop (* conversion *)
(* Custom addition for debugging *)
| Meta of Dwarf5.Meta.die (* debugging metadata *)
(* Custom additions for emulating stable-memory, special cases
of MemorySize, MemoryGrow and MemoryCopy
requiring wasm features bulk-memory and multi-memory
*)
| StableSize (* size of stable memory *)
| StableGrow (* grow stable memory *)
| StableRead (* read from stable memory *)
| StableWrite (* write to stable memory *)
(* Globals & Functions *)
type const = instr list phrase
type global = global' phrase
and global' =
{
gtype : global_type;
value : const;
}
type func = func' phrase
and func' =
{
ftype : var;
locals : value_type list;
body : instr list;
}
(* Tables & Memories *)
type table = table' phrase
and table' =
{
ttype : table_type;
}
type memory = memory' phrase
and memory' =
{
mtype : memory_type;
}
type 'data segment = 'data segment' phrase
and 'data segment' =
{
index : var;
offset : const;
init : 'data;
}
type table_segment = var list segment
(* Manual extension to support passive data segements *)
type segment_mode = segment_mode' phrase
and segment_mode' =
| Passive
| Active of {index : var; offset : const}
| Declarative
type data_segment = data_segment' phrase
and data_segment' =
{
dinit : string;
dmode : segment_mode;
}
(* End of manual extension *)
(* Modules *)
type type_ = func_type phrase
type export_desc = export_desc' phrase
and export_desc' =
| FuncExport of var
| TableExport of var
| MemoryExport of var
| GlobalExport of var
type export = export' phrase
and export' =
{
name : name;
edesc : export_desc;
}
type import_desc = import_desc' phrase
and import_desc' =
| FuncImport of var
| TableImport of table_type
| MemoryImport of memory_type
| GlobalImport of global_type
type import = import' phrase
and import' =
{
module_name : name;
item_name : name;
idesc : import_desc;
}
type module_ = module_' phrase
and module_' =
{
types : type_ list;
globals : global list;
tables : table list;
memories : memory list;
funcs : func list;
start : var option;
elems : var list segment list;
(* Manual adjustment for passive data segment support *)
datas : data_segment list;
(* End of manual adjustment *)
imports : import list;
exports : export list;
}
(* Auxiliary functions *)
let empty_module =
{
types = [];
globals = [];
tables = [];
memories = [];
funcs = [];
start = None;
elems = [];
datas = [];
imports = [];
exports = [];
}
let func_type_for (m : module_) (x : var) : func_type =
(Lib.List32.nth m.it.types x.it).it
let import_type (m : module_) (im : import) : extern_type =
let {idesc; _} = im.it in
match idesc.it with
| FuncImport x -> ExternFuncType (func_type_for m x)
| TableImport t -> ExternTableType t
| MemoryImport t -> ExternMemoryType t
| GlobalImport t -> ExternGlobalType t
let export_type (m : module_) (ex : export) : extern_type =
let {edesc; _} = ex.it in
let its = List.map (import_type m) m.it.imports in
let open Lib.List32 in
match edesc.it with
| FuncExport x ->
let fts =
funcs its @ List.map (fun f -> func_type_for m f.it.ftype) m.it.funcs
in ExternFuncType (nth fts x.it)
| TableExport x ->
let tts = tables its @ List.map (fun t -> t.it.ttype) m.it.tables in
ExternTableType (nth tts x.it)
| MemoryExport x ->
let mts = memories its @ List.map (fun m -> m.it.mtype) m.it.memories in
ExternMemoryType (nth mts x.it)
| GlobalExport x ->
let gts = globals its @ List.map (fun g -> g.it.gtype) m.it.globals in
ExternGlobalType (nth gts x.it)
let string_of_name n =
let b = Buffer.create 16 in
let escape uc =
if uc < 0x20 || uc >= 0x7f then
Buffer.add_string b (Printf.sprintf "\\u{%02x}" uc)
else begin
let c = Char.chr uc in
if c = '\"' || c = '\\' then Buffer.add_char b '\\';
Buffer.add_char b c
end
in
List.iter escape n;
Buffer.contents b
(* is_dwarf_like indicates whether an AST meta instruction
prevents dead-code elimination. Elimination is forbidden,
if the instruction contributes to a DIE, i.e. establishes, augments
or closes a DWARF Tag.
*)
let rec is_dwarf_like' =
let open Dwarf5.Meta in
function
| Tag _ | TagClose | IntAttribute _ | StringAttribute _ | OffsetAttribute _ -> true
| Grouped parts -> List.exists is_dwarf_like' parts
| StatementDelimiter _ | FutureAttribute _ -> false
let is_dwarf_like = function
| Meta m -> is_dwarf_like' m
| _ -> false