1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
open Source
open Common
open Syntax
module T = Mo_types.Type
module M = Mo_def.Syntax
module Arrange = Mo_def.Arrange
module String_map = Env.Make(String)
module Stamps = String_map
module Type_map = Env.Make (T.Ord)
(* symbol generation *)
let stamps : int Stamps.t ref = ref Stamps.empty
let reset_stamps () = stamps := Stamps.empty
let fresh_stamp name =
let n = Lib.Option.get (Stamps.find_opt name !stamps) 0 in
stamps := Stamps.add name (n + 1) !stamps;
n
let fresh_id name =
let n = fresh_stamp name in
if n = 0 then
name
else Printf.sprintf "%s_%i" name (fresh_stamp name)
(* helpers for constructing annotated syntax *)
let (^^^) at it note = { it; at; note}
let (!!!) at it = (^^^) at it NoInfo
let intLitE at i =
!!! at (IntLitE (Mo_values.Numerics.Int.of_int i))
let accE at ?(perm=FullP) fldacc =
!!! at
(AccE(
fldacc,
!!! at (PermE (!!! at perm))))
let rec conjoin es at =
match es with
| [] -> !!! at (BoolLitE true)
| e::[] -> e
| e::es' -> !!! at (AndE(e, conjoin es' at))
let rec adjoin ctxt e = function
| [] -> e
| f :: fs -> f ctxt (adjoin ctxt e fs)
let locE at arr_e ix_e field_name =
!!! at (CallE ("$loc", [arr_e; ix_e])), !!! at field_name
let sizeE at lhs =
!!! at (CallE ("$size", [lhs]))
let arrayAccE at lhs field_name perm =
let (!!) p = !!! at p in
!! (CallE ("$array_acc", [lhs; !!(FldE field_name); !!(PermE(!! perm))]))
let someE at x_e =
!!! at (CallE ("Some", [x_e]))
let noneE at =
!!! at (CallE ("None", []))
let isSomeE at opt_e =
!!! at (FldAcc (opt_e, !!! at "isSome"))
let isNoneE at opt_e =
!!! at (FldAcc (opt_e, !!! at "isNone"))
let fromSomeE at opt_e =
!!! at (FldAcc (opt_e, !!! at "some$0"))
let (|:) (x_opt : 'a option) (xs : 'a list) : 'a list =
match x_opt with
| None -> xs
| Some(x) -> x :: xs
type sort = Field | Local | Method
(* the LHS of an assignment *)
type lvalue =
| LValueVar of id (* a variable *)
| LValueUninitVar of id (* an uninitialized variable *)
| LValueFld of fldacc (* field access *)
let lvalue_str (lval : lvalue) : string =
match lval with
| LValueVar x -> x.it
| LValueUninitVar x -> x.it
| LValueFld fld -> (snd fld).it
type imported_module =
| IM_Prim (* mo:⛔ *)
| IM_base_Array (* mo:base/Array *)
module Env = T.Env
module Imports = Map.Make(String)
type ctxt =
{ self : string option;
imports : imported_module Imports.t;
ids : (sort * T.t) T.Env.t;
label_to_tmp_var : id String_map.t; (* Motoko label -> associated tmp variable *)
label_to_vpr_label : string String_map.t; (* Motoko label -> Viper label *)
reqs : reqs; (* requirements for the prelude *)
type_to_record_ctor : id Type_map.t;
ghost_items : (ctxt -> item) list ref;
ghost_inits : (ctxt -> seqn') list ref;
ghost_perms : (ctxt -> Source.region -> exp) list ref;
ghost_conc : (ctxt -> exp -> exp) list ref;
}
(* All text literals are injectively mapped into int values *)
let text_literals : (string, int) Hashtbl.t = Hashtbl.create 32
let add_locals ctxt (locals : (id * T.typ) list) =
let add (x, t) = Env.add x.it (Local, t) in
{ ctxt with ids = List.fold_right add locals ctxt.ids }
let self ctxt at =
match ctxt.self with
| Some id -> !!! at (LocalVar (!!! at id,!!! at RefT))
| _ -> failwith "no self"
let tr_string_literal at str =
let str_id =
match Hashtbl.find_opt text_literals str with
| None ->
let fresh_str_id = Hashtbl.length text_literals in
Hashtbl.add text_literals str fresh_str_id;
fresh_str_id
| Some id -> id
in
intLitE at str_id
let rec extract_invariants : item list -> (par -> invariants -> invariants) = function
| [] -> fun _ x -> x
| { it = InvariantI (s, e); at; _ } :: p ->
fun self es ->
!!! at (CallE(s, [ !!! at (LocalVar (fst self, snd self)) ]))
:: extract_invariants p self es
| _ :: p -> extract_invariants p
let rec extract_loop_invariants (e : M.exp) : (M.exp list * M.exp) =
match e with
| { it = M.BlockE ds; _ } ->
let (invs, ds') = extract_loop_invariants' ds [] in
(invs, { e with it = M.BlockE ds' })
| _ -> ([], e)
and extract_loop_invariants' (ds : M.dec list) (acc : M.exp list) : (M.exp list * M.dec list) =
match ds with
| M.({ it = ExpD ({ it = AssertE (Loop_invariant, inv); at = assert_at; _ }); _ }) :: ds ->
extract_loop_invariants' ds ({ inv with at = assert_at } :: acc)
| _ -> (List.rev acc, ds)
let rec extract_concurrency (seq : seqn) : stmt' list * seqn =
let open List in
let extr (concs, stmts) s : stmt' list * stmt list =
match s.it with
| ConcurrencyS _ -> s.it :: concs, stmts
| SeqnS seq ->
let concs', seq = extract_concurrency seq in
rev_append concs' concs, { s with it = SeqnS seq } :: stmts
| WhileS (e, inv, seq) ->
let concs', seq = extract_concurrency seq in
rev_append concs' concs, { s with it = WhileS (e, inv, seq) } :: stmts
| IfS (e, the, els) ->
let the_concs, the = extract_concurrency the in
let els_concs, els = extract_concurrency els in
rev_append els_concs (rev_append the_concs concs), { s with it = IfS (e, the, els) } :: stmts
| _ -> concs, s :: stmts in
let stmts = snd seq.it in
let conc, stmts = List.fold_left extr ([], []) stmts in
rev conc, { seq with it = fst seq.it, rev stmts }
let concat_map_seqn' : ('a -> seqn') -> 'a list -> seqn' =
fun f xs ->
let ds, stmts = List.split (List.map f xs) in
List.concat ds, List.concat stmts
let rec strip_par_p (p : M.pat) : M.pat =
match p.it with
| M.ParP p' -> strip_par_p p'
| _ -> p
let rec strip_mut_t (t : T.typ) : T.typ =
match t with
| T.Mut t' -> strip_mut_t t'
| _ -> t
let record_ctor_tag = "$RecordCtor_"
let mk_record_ctor (typ_id : M.typ_id) : id =
let name = Format.asprintf "%s%s" record_ctor_tag typ_id.it in
!!! Source.no_region name
let get_record_name ctxt (typ : T.typ) : string =
let tag_len = String.length record_ctor_tag in
let record_ctor_name = (Type_map.find typ ctxt.type_to_record_ctor).it in
String.sub record_ctor_name tag_len (String.length record_ctor_name - tag_len)
let mk_record_field ~record_name ~fld_name =
Format.asprintf "$%s$%s" record_name fld_name
let get_record_field ctxt (typ : T.typ) (fld : M.id) : M.id =
let record_name = get_record_name ctxt typ in
let fld_name = mk_record_field ~record_name ~fld_name:fld.it in
{ fld with it = fld_name }
let rec unit reqs (u : M.comp_unit) : prog Diag.result =
Diag.(
reset_stamps();
try return (unit' reqs u) with
| Unsupported (at, desc) -> error at "0" "viper" ("translation to viper failed:\n"^desc)
| exn ->
error
u.it.M.body.at
"1"
"viper"
(Format.asprintf
"translation to viper failed. Reason: %s"
(Printexc.to_string exn))
)
and unit' reqs (u : M.comp_unit) : prog =
let { M.imports; M.body } = u.it in
match body.it with
| M.ActorU(id_opt, decs) ->
let ctxt = {
self = None;
imports = tr_imports imports;
ids = Env.empty;
label_to_tmp_var = String_map.empty;
label_to_vpr_label = String_map.empty;
reqs = reqs;
type_to_record_ctor = Type_map.empty;
ghost_items = ref [];
ghost_inits = ref [];
ghost_perms = ref [];
ghost_conc = ref []
} in
let ctxt', perms, inits, mk_is = dec_fields ctxt decs in
let is' = List.map (fun mk_i -> mk_i ctxt') mk_is in
(* given is', compute ghost_is *)
let ghost_is = List.map (fun mk_i -> mk_i ctxt') !(ctxt.ghost_items) in
let init_id = !!! (Source.no_region) "__init__" in
let self_id = !!! (Source.no_region) "$Self" in
let self_typ = !!! (self_id.at) RefT in
let ctxt'' = { ctxt' with self = Some self_id.it } in
let perm =
fun (at : region) ->
List.fold_left
(fun pexp -> fun p_fn ->
!!! at (AndE(pexp, p_fn ctxt'' at)))
(!!! at (BoolLitE true))
(perms @ !(ctxt.ghost_perms))
in
(* Add initializer *)
let init_list = concat_map_seqn' (fun mk_s -> mk_s ctxt'') (inits @ !(ctxt.ghost_inits)) in
let init_body =
!!! (body.at) init_list (* ATG: Is this the correct position? *)
in
let init_m =
(^^^) (body.at) (MethodI(init_id, [self_id, self_typ], [], [], [], Some init_body)) ActorInit
in
let is'' = init_m :: is' in
(* Add permissions *)
let is''' = List.map (function
| {it = MethodI (id, ins, outs, pres, posts, body); at; note: info} ->
(^^^)
at
(MethodI (id, ins, outs,
!!! at (CallE("$Perm", [self ctxt'' at]))::pres,
!!! at (CallE("$Perm", [self ctxt'' at]))::posts,
body))
note
| x -> x) is'' in
(* Add functional invariants to public functions *)
let invs = extract_invariants is''' (self_id, self_typ) [] in
let is4 = List.map (function
| {
it = MethodI (id, ins, outs, pres, posts, body);
at;
note = ActorInit
} -> ((^^^)
at
(MethodI(id, ins, outs,
pres,
posts @ [!!! at (CallE("$Inv", [self ctxt'' at]))],
body))
ActorInit
)
| {
it = MethodI (id, ins, outs, pres, posts, body);
at;
note = PublicFunction x
} -> ((^^^)
at
(MethodI(id, ins, outs,
pres @ [!!! at (CallE("$Inv", [self ctxt'' at]))],
posts @ [!!! at (CallE("$Inv", [self ctxt'' at]))],
body))
(PublicFunction x)
)
| x -> x
) is''' in
let perm_def = !!! (body.at) (InvariantI("$Perm", perm body.at)) in
let inv_def = !!! (body.at) (InvariantI("$Inv", adjoin ctxt'' (conjoin invs body.at) !(ctxt.ghost_conc))) in
let is = ghost_is @ (perm_def :: inv_def :: is4) in
!!! (body.at) is
| _ -> assert false
and tr_imports (imps : M.import list) : imported_module Imports.t =
List.fold_left
(fun acc imp ->
let k, v = tr_import imp in
Imports.add k v acc)
Imports.empty
imps
and tr_import (imp : M.import) : (string * imported_module) =
match imp.it with
| ({it=M.VarP s;_}, "mo:⛔", _) -> (s.it, IM_Prim)
| ({it=M.VarP s;_}, "mo:base/Array", _) -> (s.it, IM_base_Array)
| (p, _, _) -> unsupported p.at (Arrange.pat p)
and dec_fields (ctxt : ctxt) (ds : M.dec_field list) =
match ds with
| [] ->
(ctxt, [], [], [])
| d :: ds ->
let ctxt, perm, init, mk_i = dec_field ctxt d in
let ctxt, perms, inits, mk_is = dec_fields ctxt ds in
(ctxt, perm |: perms, init |: inits, mk_i::mk_is)
and dec_field ctxt d =
let ctxt, perm, init, mk_i = dec_field' ctxt d.it in
(ctxt,
perm,
init,
fun ctxt' ->
let (i, info) = mk_i ctxt' in
(^^^) (d.at) i info)
and dec_field' ctxt d =
match d.M.dec.it with
(* type declarations*)
| M.(TypD (typ_id, typ_binds, {note = T.Variant cons;_})) ->
ctxt, None, None, fun ctxt ->
let adt_param tb = id tb.it.M.var in
let adt_con con = begin
let con_name = !!! Source.no_region con.T.lab in
let mk_field_name i = !!! Source.no_region (Format.asprintf "%s$%i" con.T.lab i) in
{ con_name;
con_fields = match con.T.typ with
| T.Tup ts -> List.mapi (fun i t -> mk_field_name i, tr_typ ctxt t) ts
| t -> [mk_field_name 0, tr_typ ctxt t]
}
end in
AdtI ({ typ_id with note = NoInfo },
List.map adt_param typ_binds,
List.map adt_con cons),
NoInfo
| M.(TypD (typ_id, typ_binds, { note = T.Obj (T.Object, flds) as typ; _ })) ->
let con_name = mk_record_ctor typ_id in
{ ctxt with type_to_record_ctor = Type_map.add typ con_name ctxt.type_to_record_ctor },
None,
None,
fun ctxt ->
let adt_param tb = id tb.it.M.var in
let adt_field field =
let field_name = !!! Source.no_region (mk_record_field ~record_name:typ_id.it ~fld_name:field.T.lab) in
let field_typ = tr_typ ctxt field.T.typ in
field_name, field_typ
in
let adt_con =
{ con_name;
con_fields = List.map adt_field flds
}
in
AdtI ({ typ_id with note = NoInfo },
List.map adt_param typ_binds,
[ adt_con ]),
NoInfo
(* async functions *)
| M.(LetD ({it=VarP f;note;_},
{it=FuncE(x, sp, tp, p, t_opt, sugar,
{it = AsyncE (T.Fut, _, e); _} );_}, None)) -> (* ignore async *)
{ ctxt with ids = Env.add f.it (Method, note) ctxt.ids },
None, (* no perm *)
None, (* no init *)
fun ctxt ->
let open Either in
let self_id = !!! (Source.no_region) "$Self" in
let method_args = args p in
let method_args' = List.map (fun (id, t) -> id, tr_typ ctxt t) method_args in
let ctxt = { ctxt
with self = Some self_id.it;
ids = List.fold_left (fun env (id, t) -> Env.add id.it (Local, t) env) ctxt.ids method_args }
in
let stmts = stmt ctxt e in
let _, stmts = extract_concurrency stmts in
let pres, stmts' = List.partition_map (function { it = PreconditionS exp; at; _ } -> Left { exp with at } | s -> Right s) (snd stmts.it) in
let posts, stmts' = List.partition_map (function { it = PostconditionS exp; at; _ } -> Left { exp with at } | s -> Right s) stmts' in
let arg_preds = local_access_preds ctxt in
let ret_preds, ret = rets ctxt t_opt in
let pres = arg_preds @ pres in
let posts = arg_preds @ ret_preds @ posts in
let stmts'' = stmts' @ [!!! Source.no_region (LabelS(!!! (Source.no_region) "$Ret"))] in
(MethodI(id f, (self_id, !!! Source.no_region RefT)::method_args', ret, pres, posts, Some { stmts with it = fst stmts.it, stmts'' } ),
PublicFunction f.it)
(* private sync functions *)
| M.(LetD ({it=VarP f; note;_},
{it=FuncE(x, sp, tp, p, t_opt, sugar, e );_},
None)) ->
{ ctxt with ids = Env.add f.it (Method, note) ctxt.ids },
None, (* no perm *)
None, (* no init *)
fun ctxt ->
let open Either in
let self_id = !!! (Source.no_region) "$Self" in
let method_args = args p in
let method_args' = List.map (fun (id, t) -> id, tr_typ ctxt t) method_args in
let ctxt = { ctxt
with self = Some self_id.it;
ids = List.fold_left (fun env (id, t) -> Env.add id.it (Local, t) env) ctxt.ids method_args }
in
let stmts = stmt ctxt e in
let _, stmts = extract_concurrency stmts in
let pres, stmts' = List.partition_map (function { it = PreconditionS exp; at; _ } -> Left { exp with at } | s -> Right s) (snd stmts.it) in
let posts, stmts' = List.partition_map (function { it = PostconditionS exp; at; _ } -> Left { exp with at } | s -> Right s) stmts' in
let arg_preds = local_access_preds ctxt in
let ret_preds, ret = rets ctxt t_opt in
let pres = arg_preds @ pres in
let posts = arg_preds @ ret_preds @ posts in
let stmts'' = stmts' @ [!!! Source.no_region (LabelS(!!! (Source.no_region) "$Ret"))] in
(MethodI(id f, (self_id, !!! Source.no_region RefT)::method_args', ret, pres, posts, Some { stmts with it = fst stmts.it, stmts'' } ),
PrivateFunction f.it)
(* fields *)
| M.LetD ({it=M.VarP x;_}, e, None)
| M.VarD (x, e) ->
let t = e.note.M.note_typ in
let fldacc = fun ctxt' -> (self ctxt' e.at, id x) in
let lhs = fun ctxt' -> !!! Source.no_region (FldAcc (fldacc ctxt')) in
let perms ctxt' at =
conjoin ([ accE at (self ctxt' at, id x) ]
@ (access_pred ctxt' (lhs ctxt') t |: [])) at in
{ ctxt with ids = Env.add x.it (Field, t) ctxt.ids },
Some perms, (* perm *)
Some (fun ctxt' -> (* init *)
let at = span x.at e.at in
assign_stmts ctxt' at (LValueFld (fldacc ctxt')) e),
(fun ctxt ->
(FieldI(id x, tr_typ ctxt t),
NoInfo))
(* invariants *)
| M.(ExpD { it = AssertE (Invariant, e); at; _ }) ->
ctxt,
None, (* no perm *)
None, (* no init *)
fun ctxt ->
(InvariantI (Printf.sprintf "invariant_%d" at.left.line, exp { ctxt with self = Some "$Self" } e), NoInfo)
| _ ->
unsupported d.M.dec.at (Arrange.dec d.M.dec)
and args p = match p.it with
| M.TupP ps -> List.map arg ps
| M.ParP p -> [arg p]
| _ -> unsupported p.at (Arrange.pat p)
and arg p = match p.it with
| M.AnnotP (p, t) ->
(match p.it with
| M.VarP x -> (id x, t.note)
| _ -> unsupported p.at (Arrange.pat p))
| _ -> unsupported p.at (Arrange.pat p)
and access_pred ctxt lhs t =
match T.normalize t with
| T.Array elem_t -> Some (array_acc Source.no_region ctxt lhs elem_t)
| _ -> None
(* Get access predicates for all local variables in current scope *)
and local_access_preds ctxt =
let (!!) p = !!! Source.no_region p in
let preds = Env.fold (fun id info preds ->
match info with
| (Local, t) ->
let pred = access_pred ctxt !!(LocalVar (!!id, tr_typ ctxt t)) t in
pred |: preds
| _ -> preds)
ctxt.ids []
in preds
and block ctxt at ds =
let ctxt, mk_ss = decs ctxt ds in
!!! at (mk_ss ctxt)
and decs ctxt ds =
match ds with
| [] -> (ctxt, fun ctxt' -> ([],[]))
| d::ds' ->
let (ctxt1, mk_s) = dec ctxt d in
let (ctxt2, mk_ss) = decs ctxt1 ds' in
(ctxt2,
fun ctxt' ->
let (l, s) = mk_s ctxt' in
let (ls, ss) = mk_ss ctxt' in
(l @ ls, s @ ss))
and dec ctxt d =
let (!!) p = !!! (d.at) p in
match d.it with
| M.LetD ({it=M.VarP x;_}, e, None)
| M.VarD (x, e) ->
{ ctxt with ids = Env.add x.it (Local, e.note.M.note_typ) ctxt.ids },
fun ctxt' ->
let lval = LValueUninitVar (id x) in
let d = !!(id x, tr_typ ctxt' e.note.M.note_typ) in
let ds, stmts = assign_stmts ctxt' d.at lval e in
(d :: ds, stmts)
| M.LetD ({it=M.TupP _;_} as p, scrut, None) ->
add_locals ctxt (unwrap_tup_vars_pat p),
fun ctxt' ->
let conds, _, (ds, stmts) = pat_match ctxt' scrut p in
let irrefutable = (conds = []) in
if not irrefutable then failwith "impossible: tuple patterns must be irrefutable" else
ds, stmts
| M.(ExpD e) -> (* TODO: restrict to e of unit type? *)
(ctxt,
fun ctxt' ->
let s = stmt ctxt' e in
s.it)
| _ ->
unsupported d.at (Arrange.dec d)
and compile_while
ctxt
?(label_id : M.id option)
~(at : region)
~(pred : M.exp)
~(body : M.exp)
() : seqn =
let (!!) p = !!! at p in
let (invs, body) = extract_loop_invariants body in
let invs = (* TODO: automatic adding invariant into loop require more pondering*)
(* [!!(AndE(!!(CallE("$Perm", [self ctxt at])), *)
(* !!(CallE("$Inv", [self ctxt at]))))] *)
[!!(CallE("$Perm", [self ctxt at]))]
@ local_access_preds ctxt
@ List.map (exp ctxt) invs in
let pred = exp ctxt pred in
let body =
match label_id with
| Some label_id ->
let label, ctxt = loop_label ctxt label_id in
let stmts = stmt ctxt body in
let decls, stmts = stmts.it in
!!(decls, stmts @ [ !!(LabelS label) ])
| None -> stmt ctxt body
in
!!([], [ !!(WhileS(pred, invs, body)) ])
and stmt ctxt (s : M.exp) : seqn =
let (!!) p = !!! (s.at) p in
match s.it with
| M.TupE [] ->
block ctxt s.at []
| M.BlockE ds ->
block ctxt s.at ds
| M.IfE(e, s1, s2) ->
!!([],
[ !!(IfS(exp ctxt e, stmt ctxt s1, stmt ctxt s2))])
| M.(AwaitE(T.Fut, { it = AsyncE (T.Fut, _, e); at; _ })) -> (* gross hack *)
let id = fresh_id "$message_async" in
let (!!) p = !!! (s.at) p in
let (!@) p = !!! at p in
ctxt.ghost_items :=
(fun ctxt ->
!!(FieldI (!!id, !!IntT))) ::
!(ctxt.ghost_items);
let mk_s = fun ctxt ->
[],
[!@ (FieldAssignS ((self ctxt s.at, !!id),
intLitE (s.at) 0))]
in
ctxt.ghost_inits := mk_s :: !(ctxt.ghost_inits);
let mk_p = fun ctxt at ->
accE at (self ctxt at, !!! at id)
in
ctxt.ghost_perms := mk_p :: !(ctxt.ghost_perms);
let stmts = stmt ctxt e in
(* assume that each `async {...}` has an assertion *)
let conc, _ = extract_concurrency stmts in
let mk_c = match conc with
| [] ->
fun _ x -> x
| ConcurrencyS ("1", _, cond) :: _ ->
let (!?) p = !!! (cond.at) p in
let zero, one = intLitE Source.no_region 0, intLitE Source.no_region 1 in
fun ctxt x ->
let ghost_fld () = !?(FldAcc (self ctxt cond.at, !?id)) in
let between = !?(AndE (!?(LeCmpE (zero, ghost_fld ())), !?(LeCmpE (ghost_fld (), one)))) in
let is_one = !?(EqCmpE (ghost_fld (), one)) in
!?(AndE (x, !?(AndE (between, !?(Implies (is_one, cond.it (exp ctxt)))))))
| _ -> unsupported e.at (Arrange.exp e) in
ctxt.ghost_conc := mk_c :: !(ctxt.ghost_conc);
!!([],
[ !!(FieldAssignS(
(self ctxt Source.no_region, !!id),
(!!(AddE(!!(FldAcc (self ctxt (s.at), !!id)),
intLitE Source.no_region 1)))));
!@(ExhaleS (!@(AndE(!@(CallE("$Perm", [self ctxt at])),
!@(CallE("$Inv", [self ctxt at]))))));
!@(SeqnS (
!@([],
[
!@(InhaleS (!@(AndE(!@(CallE("$Perm", [self ctxt at])),
!@(AndE(!@(CallE("$Inv", [self ctxt at])),
!@(GtCmpE(!@(FldAcc (self ctxt at, !@id)),
intLitE Source.no_region 0))))))));
!@(FieldAssignS(
(self ctxt at, !@id),
(!@(SubE(!@(FldAcc (self ctxt at, !@id)),
intLitE at 1)))));
!!! (e.at) (SeqnS stmts);
!@(ExhaleS (!@(AndE(!@(CallE("$Perm", [self ctxt at])),
!@(CallE("$Inv", [self ctxt at])))))) ])));
!!(InhaleS (!!(AndE(!!(CallE("$Perm", [self ctxt at])),
!!(CallE("$Inv", [self ctxt at]))))));
])
| M.WhileE(e, { it = M.LabelE (cont_label_id, _typ, s1); _}) ->
compile_while ~label_id:cont_label_id ~at:s.at ~pred:e ~body:s1 ctxt ()
| M.WhileE(e, s1) -> compile_while ~at:s.at ~pred:e ~body:s1 ctxt ()
| M.(SwitchE(scrut, cs)) ->
!!(switch_stmts ctxt s.at scrut cs)
| M.(AssignE({it = VarE x; _}, e2)) ->
let lval =
match fst (Env.find x.it ctxt.ids) with
| Local -> LValueVar (!!! (x.at) (x.it))
| Field -> LValueFld (self ctxt x.at, id_ref x)
| _ -> unsupported s.at (Arrange.exp s)
in !!(assign_stmts ctxt s.at lval e2)
| M.(AssignE({it = IdxE (e1, e2);_}, e3)) ->
let lval = LValueFld (array_loc ctxt s.at e1 e2 e3.note.M.note_typ) in
!!(assign_stmts ctxt s.at lval e3)
| M.AssertE (M.Precondition, e) ->
!!( [],
[ !!(PreconditionS (exp ctxt e)) ])
| M.AssertE (M.Postcondition, e) ->
!!([],
[ !!(PostconditionS (exp ctxt e)) ])
| M.AssertE (M.Concurrency n, e) ->
!!([],
[ !!(ConcurrencyS (n, exp ctxt e, !! ((|>) e))) ])
| M.AssertE (M.Static, e) ->
!!([],
[ !!(AssertS (exp ctxt e)) ])
| M.AssertE (M.Runtime, e) ->
!!([],
[ !!(AssumeS (exp ctxt e)) ])
| M.(CallE({it = VarE m; _}, inst, args)) ->
!!([],
[ !!(MethodCallS ([], id_ref m,
let self_var = self ctxt m.at in
self_var :: call_args ctxt args))])
| M.RetE e ->
let lval = (LValueUninitVar (!!! (Source.no_region) "$Res")) in
let ds, stmts = assign_stmts ctxt s.at lval e in
let stmt = !!(GotoS(!!! (Source.no_region) "$Ret")) in
!!(ds, stmts @ [stmt])
| M.LabelE (label_id, typ, e) ->
let label_id, ctxt = loop_label ctxt label_id in
let label = !!! Source.no_region (LabelS label_id) in
let stmts = stmt ctxt e in
let decls, stmts = stmts.it in
let stmts = stmts @ [ label ] in
!!(decls, stmts)
| M.BreakE (label_id, { it = M.TupE []; _ }) ->
(* Loop case *)
let label_name = String_map.find label_id.it ctxt.label_to_vpr_label in
!!([], [ !!(GotoS !!label_name) ])
| M.BreakE (label_id, ret) ->
(* Expression case *)
let stmts =
match String_map.find_opt label_id.it ctxt.label_to_tmp_var with
| None -> stmt ctxt ret
| Some x ->
let lvalue = LValueVar x in
let stmts = assign_stmts ctxt ret.at lvalue ret in
!!stmts
in
let decls, stmts = stmts.it in
let label_name = String_map.find label_id.it ctxt.label_to_vpr_label in
!!(decls, stmts @ [ !!(GotoS !!label_name) ])
| _ ->
unsupported s.at (Arrange.exp s)
(* Translate switch(scrut){...}. *)
and switch_stmts ctxt at (scrut : M.exp) (cases : M.case list) : seqn' =
match cases with
| [] -> [], []
| c :: cs -> begin
let (!!) a = !!! (c.at) a in
let {M.pat = p; M.exp = e} = c.it in
let conds, p_scope, (p_ds, p_stmts) = pat_match ctxt scrut p in
let local_ctxt = add_locals ctxt p_scope in
let {it = (e_ds, e_stmts);_} = stmt local_ctxt e in
let the = (p_ds @ e_ds, p_stmts @ e_stmts) in
let els = switch_stmts ctxt at scrut cs in
[], [!!(IfS(conjoin conds at, !!the, !!els))]
end
and pat_match ctxt (scrut : M.exp) (p : M.pat) : exp list * (id * T.typ) list * seqn' =
let (!!) a = !!! (p.at) a in
match (strip_par_p p).it with
| M.AnnotP (p, _typ) -> pat_match ctxt scrut p
| M.LitP lit ->
begin match !lit with
| M.NullLit -> [isNoneE (p.at) (exp ctxt scrut)], [], ([], [])
| M.BoolLit b ->
let e_scrut = exp ctxt scrut in
let rhs = !!(BoolLitE b) in
[ !!(EqCmpE (e_scrut, rhs)) ], [], ([], [])
| M.NatLit n | M.IntLit n ->
let e_scrut = exp ctxt scrut in
let rhs = !!(IntLitE n) in
[ !!(EqCmpE (e_scrut, rhs)) ], [], ([], [])
| M.TextLit str ->
let e_scrut = exp ctxt scrut in
let rhs = tr_string_literal p.at str in
[ !!(EqCmpE (e_scrut, rhs)) ], [], ([], [])
| M.PreLit _ -> failwith "Expected PreLit to be eliminated after typing"
| _ -> unsupported (p.at) (Arrange.lit !lit)
end
| M.OptP p' ->
let e_scrut = exp ctxt scrut in
let cond = isSomeE (p.at) e_scrut in
let x, t = unwrap_var_pat p' in
let ds = [!!(x, tr_typ ctxt t)] in
let stmts = [!!(assign_stmt (LValueUninitVar x) (fromSomeE (scrut.at) e_scrut))] in
[cond], [(x, t)], (ds, stmts)
| M.(TupP ps) ->
let p_scope = unwrap_tup_vars_pat p in
let ds = List.map (fun (x, t) -> !!(x, tr_typ ctxt t)) p_scope in
let tup_prj_assign_stmt i lval t = begin
let rhs = prjE ctxt (p.at) scrut i in
!!(assign_stmt lval rhs)
end in
let stmts = List.mapi (fun i (x, t) -> tup_prj_assign_stmt i (LValueUninitVar x) t) p_scope in
[], p_scope, (ds, stmts)
| M.(TagP(l, p')) ->
let e_scrut = exp ctxt scrut in
let cond = !!(FldAcc (e_scrut, !!("is" ^ l.it))) in
let p_scope = unwrap_tup_vars_pat p' in
let ds = List.map (fun (x, t) -> !!(x, tr_typ ctxt t)) p_scope in
let fld_assign_stmt i lval = begin
let rhs = !!(FldAcc (e_scrut, !!(l.it ^ "$" ^ string_of_int i))) in
!!(assign_stmt lval rhs)
end in
let stmts = List.mapi (fun i (x, t) -> fld_assign_stmt i (LValueUninitVar x)) p_scope in
[cond], p_scope, (ds, stmts)
| M.ObjP pat_fields ->
let e_scrut = exp ctxt scrut in
let p_scope = List.map (fun M.{ it = { id = _; pat }; _ } -> unwrap_var_pat pat) pat_fields in
let ds = List.map (fun (x, t) -> !!(x, tr_typ ctxt t)) p_scope in
let fld_assign_stmt lval fld_name =
let rhs = !!(FldAcc (e_scrut, id fld_name)) in
!!(assign_stmt lval rhs)
in
let stmts =
List.map2
(fun M.{ it = { id = fld_name; pat = _ }; _ } (x, _) ->
let fld_name = get_record_field ctxt (T.normalize p.note) fld_name in
fld_assign_stmt (LValueUninitVar x) fld_name)
pat_fields p_scope
in
[], p_scope, (ds, stmts)
| M.WildP -> [], [], ([], [])
| _ -> unsupported p.at (Arrange.pat p)
and unwrap_tup_vars_pat (p : M.pat) : (id * T.typ) list =
match (strip_par_p p).it with
| M.TupP ps -> List.map unwrap_var_pat ps
| _ -> [unwrap_var_pat p]
and unwrap_var_pat (p : M.pat) : (id * T.typ) =
match (strip_par_p p).it with
| M.VarP x -> id x, p.note
| M.AnnotP (p', t) -> fst (unwrap_var_pat p'), t.note
| _ -> unsupported p.at (Arrange.pat p)
(* Translate assignment a:=b or initialization. May create temporary variables
if the LHS is a field or if the RHS is an array. *)
and assign_stmts ctxt at (lval : lvalue) (e : M.exp) : seqn' =
let (!!) p = !!! at p in
let t = e.note.M.note_typ in
match e with
| M.({it=TupE [];_}) -> [], []
| M.({it=AnnotE (e, _);_}) -> assign_stmts ctxt at lval e
| M.({it=CallE ({it=M.DotE ({it=M.VarE(m);_}, {it="init";_});_}, _inst, args);_})
when Imports.find_opt (m.it) ctxt.imports = Some(IM_base_Array)
->
begin match args with
| M.({it=TupE([e1;e2]); _}) ->
fld_via_tmp_var ctxt lval t (fun x ->
let lhs = !!(LocalVar (x, tr_typ ctxt t)) in
[], [ !!(AssertS !!(GeCmpE (exp ctxt e1, intLitE at 0)))
; !!(InhaleS (array_acc at ctxt lhs (array_elem_t t)))
; !!(InhaleS (array_size_inv at lhs (exp ctxt e1)))
; !!(InhaleS (array_init_const at ctxt lhs (array_elem_t t) (exp ctxt e2))) ]
)
| _ -> unsupported args.at (Arrange.exp args)
end
| M.({it = CallE({it = VarE m; _}, inst, args); _}) ->
fld_via_tmp_var ctxt lval t (fun x ->
let self_var = self ctxt m.at in
[], [ !!(MethodCallS ([x], id_ref m, self_var :: call_args ctxt args)) ])
| M.({it=ArrayE(mut, es); _}) ->
via_tmp_var ctxt lval t (fun x ->
let lhs = !!(LocalVar (x, tr_typ ctxt t)) in
[], array_alloc at ctxt lhs (array_elem_t t) es)
| M.{ it = LabelE (label_id, ret_typ, e); note; _ } ->
via_tmp_var ctxt lval t (fun x ->
label_expr_alloc ~label_id ~label_type:ret_typ ~label_rhs:e ~label_note:note at ctxt x)
| _ ->
[], [!!(assign_stmt lval (exp ctxt e))]
and assign_stmt (lval : lvalue) (e : exp) : stmt' =
match lval with
| LValueVar x -> VarAssignS(x, e)
| LValueUninitVar x -> VarAssignS(x, e)
| LValueFld fld -> FieldAssignS(fld, e)
and fld_via_tmp_var ctxt (lval : lvalue) (t : T.typ) (f : id -> seqn') : seqn' =
match lval with
| LValueVar x -> f x
| LValueUninitVar x -> f x
| LValueFld _ -> via_tmp_var ctxt lval t f
and via_tmp_var ctxt (lval : lvalue) (t : T.typ) (f : id -> seqn') : seqn' =
match lval with
| LValueUninitVar x -> f x (* initialization never needs a tmp variable *)
| _ ->
let (!!) p = !!! Source.no_region p in
let tmp_id = !! (fresh_id ("$t_" ^ lvalue_str lval)) in
let tmp_typ = tr_typ ctxt t in
let tmp_e = !! (LocalVar (tmp_id, tmp_typ)) in
let d = !! (tmp_id, tmp_typ) in
let ds, stmts = f tmp_id in
let stmt = !!(assign_stmt lval tmp_e) in
d :: ds, stmts @ [stmt]
and call_args ctxt e =
match e with
| {it = M.TupE args; _} -> List.map (fun arg -> exp ctxt arg) args
| arg -> [exp ctxt arg]
and exp ctxt e =
let open Mo_values.Operator in
let (!!) p = !!! (e.at) p in
let e_t = e.note.M.note_typ in
match e.it with
| M.VarE x ->
begin
match Env.find x.it ctxt.ids with
| Local, t ->
!!(LocalVar (id_ref x, tr_typ ctxt t))
| Field, _ ->
!!(FldAcc (self ctxt x.at, id_ref x))
| _ ->
unsupported e.at (Arrange.exp e)
end
| M.AnnotE(a, b) ->
exp ctxt a
| M.CallE ({it=M.DotE (e1, {it="size";_});_}, _inst, {it=M.TupE ([]);at;_})
-> sizeE at (exp ctxt e1)
| M.LitE r ->
begin match !r with
| M.BoolLit b ->
!!(BoolLitE b)
| M.IntLit i ->
!!(IntLitE i)
| M.NatLit i ->
!!(IntLitE i)
| M.NullLit ->
noneE (e.at)
| M.TextLit str ->
tr_string_literal e.at str
| _ ->
unsupported e.at (Arrange.exp e)
end
| M.NotE e ->
!!(NotE (exp ctxt e))
| M.RelE (ot, e1, op, e2) ->
let e1, e2 = exp ctxt e1, exp ctxt e2 in
!!(match op with
| EqOp -> EqCmpE (e1, e2)
| NeqOp -> NeCmpE (e1, e2)
| GtOp -> GtCmpE (e1, e2)
| GeOp -> GeCmpE (e1, e2)
| LtOp -> LtCmpE (e1, e2)
| LeOp -> LeCmpE (e1, e2))
| M.BinE (ot, e1, op, e2) ->
let e1, e2 = exp ctxt e1, exp ctxt e2 in
!!(match op with
| AddOp -> AddE (e1, e2)
| SubOp -> SubE (e1, e2)
| MulOp -> MulE (e1, e2)
| DivOp -> DivE (e1, e2)
| ModOp -> ModE (e1, e2)
| CatOp -> CallE ("$concat", [e1; e2])
| _ -> unsupported e.at (Arrange.exp e))
| M.OrE (e1, e2) ->
!!(OrE (exp ctxt e1, exp ctxt e2))
| M.AndE (e1, e2) ->
!!(AndE (exp ctxt e1, exp ctxt e2))
| M.ImpliesE (e1, e2) ->
!!(Implies (exp ctxt e1, exp ctxt e2))
| M.OldE e ->
!!(Old (exp ctxt e))
| M.IdxE (e1, e2) ->
!!(FldAcc (array_loc ctxt e.at e1 e2 e_t))
| M.ProjE (e, i) ->
prjE ctxt e.at e i
| M.OptE e ->
someE (e.at) (exp ctxt e)
| M.TagE (tag, e) ->
!!(match e.it with
| M.TupE es -> CallE (tag.it, List.map (exp ctxt) es)
| _ -> CallE (tag.it, [exp ctxt e]))
| M.ObjE ([], flds) ->
(match T.normalize e.note.M.note_typ with
| T.Obj (T.Object, typ_flds) as t ->
let record_ctor_name = Type_map.find t ctxt.type_to_record_ctor in
let flds = List.map (fun M.{ it = { mut; id; exp }; _} ->
match mut.it with
| M.Const -> id.it, exp
| M.Var -> unsupported mut.at (Arrange.exp e)) flds
in
let args = List.map (fun T.{ lab; _ } ->
let rhs_exp = List.assoc lab flds in
exp ctxt rhs_exp) typ_flds
in
!!(CallE (record_ctor_name.it, args))
| T.Obj _ -> unsupported e.at (Arrange.exp e)
| _ -> assert false)
| M.DotE (proj, fld) when Type_map.mem (T.normalize proj.note.M.note_typ) ctxt.type_to_record_ctor ->
let proj_t = T.normalize proj.note.M.note_typ in
let proj = exp ctxt proj in
let fld = id (get_record_field ctxt proj_t fld) in
!!(FldAcc (proj, fld))
| M.TupE es ->
let n = List.length es in
ctxt.reqs.tuple_arities := IntSet.add n !(ctxt.reqs.tuple_arities);
!!(CallE (tup_con_name n, List.map (exp ctxt) es))
| M.CallE ({ it = M.DotE ({it=M.VarE(m);_}, {it=predicate_name;_}); _ }, _inst, { it = M.FuncE (_, _, _, pattern, _, _, e); note; _ })
when Imports.find_opt (m.it) ctxt.imports = Some(IM_Prim)
&& (predicate_name = "forall" || predicate_name = "exists")
->
let binders = extract_binders pattern in
let typs =
match M.(note.note_typ) with
| T.Func (_, _, _, [ T.Tup args ], _) -> args
| T.Func (_, _, _, [ arg ], _) -> [ arg ]
| _ -> []
in
let typed_binders =
List.fold_left2
(fun acc b t -> (id b, t) :: acc)
[] binders typs
in
let ctxt = add_locals ctxt typed_binders in
let typed_binders = List.map (fun (b, t) -> (b, tr_typ ctxt t)) typed_binders in
let e = exp ctxt e in
(match predicate_name with
| "forall" -> !!(ForallE (typed_binders, e))
| "exists" -> !!(ExistsE (typed_binders, e))
| _ -> assert false)
| M.CallE ({ it = M.DotE ({it=M.VarE(m);_}, {it="Ret";_}); _ }, _, _)
when Imports.find_opt (m.it) ctxt.imports = Some(IM_Prim) -> !!(FldE "$Res")
| _ ->
unsupported e.at (Arrange.exp e)
and extract_binders pattern =
match pattern.it with
| M.AnnotP ({ it = M.VarP binder; _ }, _) | M.VarP binder ->
[ binder ]
| M.ParP pattern -> extract_binders pattern
| M.TupP pats -> List.concat_map extract_binders pats
| _ -> []
and rets ctxt t_opt =
let (!!) p = !!! Source.no_region p in
match t_opt with
| None -> [], []
| Some t ->
(match t.note with
| T.Tup [] -> [], []
| T.Async (T.Fut, _, _) -> [], []
| typ ->
let pred = access_pred ctxt !!(LocalVar (!!"$Res", tr_typ ctxt typ)) typ in
pred |: [], [(!!"$Res", tr_typ ctxt typ)]
)
and id id = Source.annotate NoInfo id.it id.at
and id_ref id = Source.annotate NoInfo id.it id.at
and loop_label ctxt loop_label =
let label_name =
match String.split_on_char ' ' loop_label.it with
| ["continue"; name] -> "continue$" ^ name
| _ -> loop_label.it
in
let label_name = fresh_id ("$lbl$" ^ label_name) in
let ctxt =
{ ctxt with label_to_vpr_label = String_map.add loop_label.it label_name ctxt.label_to_vpr_label }
in
id { loop_label with it = label_name }, ctxt
and prjE ctxt at e i =
let n = List.length (tuple_elem_ts e.note.M.note_typ) in
ctxt.reqs.tuple_arities := IntSet.add n !(ctxt.reqs.tuple_arities);
!!! at (FldAcc (exp ctxt e, !!! at (tup_prj_name n i)))
and tr_typ ctxt typ =
{ it = tr_typ' ctxt typ;
at = Source.no_region;
note = NoInfo }
and tr_typ' ctxt typ =
let norm_typ = T.normalize typ in
match typ, norm_typ with
| _, T.Prim T.Int -> IntT
| _, T.Prim T.Nat -> IntT (* Viper has no native support for Nat, so translate to Int *)
| _, T.Prim T.Text -> IntT (* Viper has no native support for Text, so translate to uninterpreted Int values *)
| _, T.Prim T.Bool -> BoolT
| _, T.Array _ -> ArrayT (* Viper arrays are not parameterised by element type *)
| _, T.Opt t -> OptionT (tr_typ ctxt t)
| _, T.Tup ts ->
ctxt.reqs.tuple_arities := IntSet.add (List.length ts) !(ctxt.reqs.tuple_arities);
TupleT (List.map (tr_typ ctxt) ts)
| _, T.Obj (T.Object, flds) ->
let record_name = get_record_name ctxt norm_typ in
ConT (!!! Source.no_region record_name, [])
| T.Con (con, ts), _ -> ConT (!!! Source.no_region (Mo_types.Cons.name con), List.map (tr_typ ctxt) ts)
| _, t -> unsupported Source.no_region (Mo_types.Arrange_type.typ t)
and is_mut t =
match T.normalize t with
| T.Mut _ -> true
| _ -> false
and array_elem_t t =
match T.normalize t with
| T.Array elem_t -> elem_t
| t -> failwith "array_elem_t: expected array type"
and tuple_elem_ts t =
match T.normalize t with
| T.Tup ts -> ts
| t -> failwith "tuple_elem_ts: expected tuple type"
(* name of field of typed reference *)
and typed_field ctxt t =
let t' = tr_typ ctxt (strip_mut_t t) in
let name = type_field_name t' in
ctxt.reqs.typed_fields := StrMap.add name t' !(ctxt.reqs.typed_fields);
name
and type_field_name t =
match t.it with
| IntT -> "$int"
| BoolT -> "$bool"
| RefT -> "$ref"
| ArrayT -> "$array"
| TupleT ts -> "$tuple" ^ string_of_int (List.length ts) ^ String.concat "" (List.map type_field_name ts)
| OptionT t' -> "$option" ^ type_field_name t'
| ConT (con, ts) -> "$c_" ^ con.it ^ String.concat "" (List.map type_field_name ts)
and array_size_inv at lhs n =
!!! at (EqCmpE (sizeE at lhs, n))
and array_acc at ctxt lhs t =
match T.normalize t with
| T.Mut _-> arrayAccE at lhs (typed_field ctxt t) FullP
| _ -> arrayAccE at lhs (typed_field ctxt t) WildcardP
(* Allocate array on the LHS expression.
Note: array_alloc assumes that the array is uninitialized. Assignment to
existing arrays must be done via a temporary variable. *)
and array_alloc at ctxt lhs t es : stmt list =
let (!!) p = !!! at p in
let init_array = List.mapi (fun i e ->
FieldAssignS (locE at lhs (intLitE at i) (typed_field ctxt t), exp ctxt e)) es in
(* InhaleS (!! (FldAcc (locE at lhs (intLitE at i) (typed_field t))) === e)) es in *)
let reset_perm =
(match T.normalize t with
| T.Mut _ -> []
| _ -> [ExhaleS (array_acc at ctxt lhs t); InhaleS (array_acc at ctxt lhs t)])in
let stmts = [ InhaleS (array_acc at ctxt lhs (T.Mut t))
; InhaleS (array_size_inv at lhs (intLitE at (List.length es)))]
@ init_array
@ reset_perm
in List.map (!!) stmts
and array_init_const at ctxt lhs t x =
let (!!) p = !!! at p in
!! (CallE ("$array_init", [lhs; !!(FldE (typed_field ctxt t)); x]))
and array_loc ctxt at e1 e2 t =
locE at (exp ctxt e1) (exp ctxt e2) (typed_field ctxt t)
and label_expr_alloc ~label_id ~label_type ~label_rhs ~label_note at ctxt lhs : seqn' =
let ctxt =
match label_type.it with
| M.TupT [] -> ctxt
| _ -> { ctxt with label_to_tmp_var = String_map.add label_id.it lhs ctxt.label_to_tmp_var }
in
let wrap_break exp =
match label_type.it, exp.it with
| M.TupT [], _ | _, M.BreakE _ ->
(* Here is a hack: instead of assigning a unit expression
we'll just treat them as statements. The next Motoko's code
{[
let x = label unit_lbl : () { break unit_lbl(v := 42); unreachable_expr; };
]}
would be translated to
{[
v := 42;
goto unit_lbl;
unreachable_expr;
label unit_lbl;
]} *)
exp
| _ -> { exp with it = M.BreakE (label_id, exp) }
in
let label_rhs =
match label_rhs.it with
| M.BlockE decs ->
(* In case of block expression we want to wrap the last one
with [break] if it's not wrapped yet.
{[
let x = label lbl : t {
stmt1;
stmt2;
ret_expr
}
]}
Example above would be mapped to
{[
let x = label lbl : t {
stmt1;
stmt2;
break lbl(ret_expr);
}
]} *)
let decs = map_last decs ~f:(fun dec ->
match dec.it with
| M.ExpD exp ->
let exp = wrap_break exp in
{ dec with it = M.ExpD exp }
| _ -> dec) in
{ label_rhs with it = M.BlockE decs }
| _ -> wrap_break label_rhs
in
let label = M.{ it = LabelE (label_id, label_type, label_rhs); at; note = label_note } in
let label_tr = stmt ctxt label in
label_tr.it