1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
(* Representation *)
type lab = string
type var = string
type control =
| Returns (* regular local function or one-shot shared function *)
| Promises (* shared function producing a future value upon call *)
| Replies (* (IR only): responds asynchronously using `reply` *)
type obj_sort =
Object
| Actor
| Module
| Memory (* (codegen only): stable memory serialization format *)
type async_sort = Fut | Cmp
type shared_sort = Query | Write | Composite
type 'a shared = Local | Shared of 'a
type func_sort = shared_sort shared
type eff = Triv | Await
type prim =
| Null
| Bool
| Nat
| Nat8
| Nat16
| Nat32
| Nat64
| Int
| Int8
| Int16
| Int32
| Int64
| Float
| Char
| Text
| Blob (* IR use: Packed representation, vec u8 IDL type *)
| Error
| Principal
| Region
type t = typ
and typ =
| Var of var * int (* variable *)
| Con of con * typ list (* constructor *)
| Prim of prim (* primitive *)
| Obj of obj_sort * field list (* object *)
| Variant of field list (* variant *)
| Array of typ (* array *)
| Opt of typ (* option *)
| Tup of typ list (* tuple *)
| Func of func_sort * control * bind list * typ list * typ list (* function *)
| Async of async_sort * scope * typ (* future *)
| Mut of typ (* mutable type *)
| Any (* top *)
| Non (* bottom *)
| Typ of con (* type (field of module) *)
| Pre (* pre-type *)
and scope = typ
and bind_sort = Scope | Type
and bind = {var : var; sort: bind_sort; bound : typ}
and src = {depr : string option; region : Source.region}
and field = {lab : lab; typ : typ; src : src}
and con = kind Cons.t
and kind =
| Def of bind list * typ
| Abs of bind list * typ
let empty_src = {depr = None; region = Source.no_region}
(* Efficient comparison *)
let tag_prim = function
| Null -> 0
| Bool -> 1
| Nat -> 2
| Nat8 -> 3
| Nat16 -> 4
| Nat32 -> 5
| Nat64 -> 6
| Int -> 7
| Int8 -> 8
| Int16 -> 9
| Int32 -> 10
| Int64 -> 11
| Float -> 12
| Char -> 13
| Text -> 14
| Blob -> 15
| Error -> 16
| Principal -> 17
| Region -> 18
let tag_func_sort = function
| Local -> 0
| Shared Write -> 1
| Shared Query -> 2
| Shared Composite -> 3
let tag_obj_sort = function
| Object -> 0
| Module -> 1
| Actor -> 2
| Memory -> 3
let tag_control = function
| Returns -> 0
| Promises -> 1
| Replies -> 2
let tag = function
| Prim _ -> 0
| Var _ -> 1
| Con _ -> 2
| Array _ -> 3
| Tup _ -> 4
| Func _ -> 5
| Opt _ -> 6
| Async _ -> 7
| Obj _ -> 8
| Variant _ -> 9
| Mut _ -> 10
| Any -> 11
| Non -> 12
| Pre -> 13
| Typ _ -> 14
let compare_prim p1 p2 =
let d = tag_prim p1 - tag_prim p2 in
if d > 0 then 1 else if d < 0 then -1 else 0
let compare_control c1 c2 =
let d = tag_control c1 - tag_control c2 in
if d > 0 then 1 else if d < 0 then -1 else 0
let compare_async_sort s1 s2 =
match s1, s2 with
| Fut, Fut
| Cmp, Cmp -> 0
| Fut, Cmp -> -1
| Cmp, Fut -> 1
let compare_obj_sort s1 s2 =
let d = tag_obj_sort s1 - tag_obj_sort s2 in
if d > 0 then 1 else if d < 0 then -1 else 0
let compare_func_sort s1 s2 =
let d = tag_func_sort s1 - tag_func_sort s2 in
if d > 0 then 1 else if d < 0 then -1 else 0
let compare_bind_sort s1 s2 =
match s1, s2 with
| Type, Type
| Scope, Scope -> 0
| Type, Scope -> -1
| Scope, Type -> 1
let compare_src s1 s2 =
match (s1.depr, s2.depr) with
| None, None -> 0
| Some d1, Some d2 -> String.compare d1 d2
| None, Some _ -> -1
| _ -> 1
let rec compare_typ (t1 : typ) (t2 : typ) =
if t1 == t2 then 0
else match (t1, t2) with
| Prim p1, Prim p2 ->
compare_prim p1 p2
| Var (s1, i1), Var (s2, i2) ->
(match Int.compare i1 i2 with
| 0 -> String.compare s1 s2
| ord -> ord)
| Con (c1, ts1), Con (c2, ts2) ->
(match Cons.compare c1 c2 with
| 0 -> compare_typs ts1 ts2
| ord -> ord)
| Array t1, Array t2 ->
compare_typ t1 t2
| Tup ts1, Tup ts2 ->
compare_typs ts1 ts2
| Func (s1, c1, tbs1, ts11, ts12),
Func (s2, c2, tbs2, ts21, ts22) ->
(match compare_func_sort s1 s2 with
| 0 ->
(match compare_control c1 c2 with
| 0 ->
(match compare_tbs tbs1 tbs2 with
| 0 ->
(match compare_typs ts11 ts21 with
| 0 -> compare_typs ts12 ts22
| ord -> ord)
| ord -> ord)
| ord -> ord)
| ord -> ord)
| Opt t1, Opt t2 -> compare_typ t1 t2
| Async (s1, t11, t12) , Async (s2, t21, t22) ->
(match compare_async_sort s1 s2 with
| 0 -> (match compare_typ t11 t21 with
| 0 -> compare_typ t12 t22
| ord -> ord)
| ord -> ord)
| Obj (s1, fs1), Obj (s2, fs2) ->
(match compare_obj_sort s1 s2 with
| 0 -> compare_flds fs1 fs2
| ord -> ord)
| Variant fs1, Variant fs2 ->
compare_flds fs1 fs2
| Mut t1, Mut t2 ->
compare_typ t1 t2
| Any, Any
| Non, Non
| Pre, Pre -> 0
| Typ c1, Typ c2 -> Cons.compare c1 c2
| _ -> Int.compare (tag t1) (tag t2)
and compare_tb tb1 tb2 =
match String.compare tb1.var tb2.var with
| 0 ->
(match compare_typ tb1.bound tb2.bound with
| 0 -> compare_bind_sort tb1.sort tb2.sort
| ord -> ord)
| ord -> ord
and compare_tbs tbs1 tbs2 =
match (tbs1, tbs2) with
| [], [] -> 0
| [], (_::_) -> -1
| (_::_, []) -> 1
| (tb1::tbs1, tb2 :: tbs2) ->
(match compare_tb tb1 tb2 with
| 0 -> compare_tbs tbs1 tbs2
| ord -> ord)
and compare_fld fld1 fld2 =
match String.compare fld1.lab fld2.lab with
| 0 ->
(match compare_typ fld1.typ fld2.typ with
| 0 -> compare_src fld1.src fld2.src
| ord -> ord)
| ord -> ord
and compare_flds flds1 flds2 =
match (flds1, flds2) with
| [], [] -> 0
| [], (_::_) -> -1
| (_::_, []) -> 1
| (fld1::flds1, fld2 :: flds2) ->
(match compare_fld fld1 fld2 with
| 0 -> compare_flds flds1 flds2
| ord -> ord)
and compare_typs ts1 ts2 =
match (ts1, ts2) with
| [], [] -> 0
| [], (_::_) -> -1
| (t1::ts1, t2 :: ts2) ->
(match compare_typ t1 t2 with
| 0 -> compare_typs ts1 ts2
| ord -> ord)
| _ -> 1
let compare_rel (t1, t2) (u1, u2) =
match compare_typ (t1 : typ) (u1 : typ) with
| 0 -> compare_typ (t2 : typ) (u2 : typ)
| ord -> ord
(* Syntactic orderings *)
module Ord = struct
type t = typ
let compare = compare_typ
end
module OrdPair = struct
type t = typ * typ
let compare = compare_rel
end
(* Function sorts *)
let is_shared_sort sort = sort <> Local
(* Constructors *)
let set_kind c k =
match Cons.kind c with
| Abs (_, Pre) -> Cons.unsafe_set_kind c k
| _ -> raise (Invalid_argument "set_kind")
module ConEnv = Env.Make(struct type t = con let compare = Cons.compare end)
module ConSet = ConEnv.Dom
(* Field ordering *)
let compare_field f1 f2 =
match f1,f2 with
| {lab = l1; typ = Typ _; _}, {lab = l2; typ = Typ _; _} -> compare l1 l2
| {lab = l1; typ = Typ _; _}, {lab = l2; typ = _; _} -> -1
| {lab = l1; typ = _; _}, {lab = l2; typ = Typ _; _} -> 1
| {lab = l1; typ = _; _}, {lab = l2; typ = _; _} -> compare l1 l2
(* Short-hands *)
let unit = Tup []
let bool = Prim Bool
let nat = Prim Nat
let nat64 = Prim Nat64
let int = Prim Int
let text = Prim Text
let blob = Prim Blob
let error = Prim Error
let char = Prim Char
let principal = Prim Principal
let region = Prim Region
let fields flds =
List.sort compare_field
(List.map (fun (lab, typ) -> {lab; typ; src = empty_src}) flds)
let obj sort flds =
Obj (sort, fields flds)
let sum flds =
Variant (fields flds)
let throwErrorCodes = List.sort compare_field [
{ lab = "canister_reject"; typ = unit; src = empty_src}
]
let call_error = Obj(Object,[{ lab = "err_code"; typ = Prim Nat32; src = empty_src}])
let catchErrorCodes = List.sort compare_field (
throwErrorCodes @ [
{ lab = "system_fatal"; typ = unit; src = empty_src};
{ lab = "system_transient"; typ = unit; src = empty_src};
{ lab = "destination_invalid"; typ = unit; src = empty_src};
{ lab = "canister_error"; typ = unit; src = empty_src};
{ lab = "future"; typ = Prim Nat32; src = empty_src};
{ lab = "call_error"; typ = call_error; src = empty_src};
])
let throw = Prim Error
let catch = Prim Error
(* Shared call context *)
let caller = principal
let ctxt = Obj (Object,[{ lab = "caller"; typ = caller; src = empty_src}])
let prim = function
| "Null" -> Null
| "Bool" -> Bool
| "Nat" -> Nat
| "Nat8" -> Nat8
| "Nat16" -> Nat16
| "Nat32" -> Nat32
| "Nat64" -> Nat64
| "Int" -> Int
| "Int8" -> Int8
| "Int16" -> Int16
| "Int32" -> Int32
| "Int64" -> Int64
| "Float" -> Float
| "Char" -> Char
| "Text" -> Text
| "Blob" -> Blob
| "Error" -> Error
| "Principal" -> Principal
| "Region" -> Region
| s -> raise (Invalid_argument ("Type.prim: " ^ s))
let seq = function [t] -> t | ts -> Tup ts
let codom c to_scope ts2 = match c with
| Promises -> Async (Fut, to_scope(), seq ts2)
| Returns -> seq ts2
| Replies -> Tup []
(* Coercions *)
let iter_obj t =
Obj (Object,
[{lab = "next"; typ = Func (Local, Returns, [], [], [Opt t]); src = empty_src}])
(* Shifting *)
let rec shift i n t =
match t with
| Prim _ -> t
| Var (s, j) -> Var (s, if j < i then j else j + n)
| Con (c, ts) -> Con (c, List.map (shift i n) ts)
| Array t -> Array (shift i n t)
| Tup ts -> Tup (List.map (shift i n) ts)
| Func (s, c, tbs, ts1, ts2) ->
let i' = i + List.length tbs in
Func (s, c, List.map (shift_bind i' n) tbs, List.map (shift i' n) ts1, List.map (shift i' n) ts2)
| Opt t -> Opt (shift i n t)
| Async (s, t1, t2) -> Async (s, shift i n t1, shift i n t2)
| Obj (s, fs) -> Obj (s, List.map (shift_field n i) fs)
| Variant fs -> Variant (List.map (shift_field n i) fs)
| Mut t -> Mut (shift i n t)
| Any -> Any
| Non -> Non
| Pre -> Pre
| Typ c -> Typ c
and shift_bind i n tb =
{tb with bound = shift i n tb.bound}
and shift_field i n {lab; typ; src} =
{lab; typ = shift i n typ; src}
(*
and shift_kind i n k =
match k with
| Def (tbs, t) ->
let i' = i + List.length tbs in
Def (List.map (shift_bind i' n) tbs, shift i' n t)
| Abs (tbs, t) ->
let i' = i + List.length tbs in
Abs (List.map (shift_bind i' n) tbs, shift i' n t)
*)
(* First-order substitution *)
let rec subst sigma t =
if sigma = ConEnv.empty then t else
match t with
| Prim _
| Var _ -> t
| Con (c, ts) ->
(match ConEnv.find_opt c sigma with
| Some t -> assert (List.length ts = 0); t
| None -> Con (c, List.map (subst sigma) ts)
)
| Array t -> Array (subst sigma t)
| Tup ts -> Tup (List.map (subst sigma) ts)
| Func (s, c, tbs, ts1, ts2) ->
let sigma' = ConEnv.map (shift 0 (List.length tbs)) sigma in
Func (s, c, List.map (subst_bind sigma') tbs,
List.map (subst sigma') ts1, List.map (subst sigma') ts2)
| Opt t -> Opt (subst sigma t)
| Async (s, t1, t2) -> Async (s, subst sigma t1, subst sigma t2)
| Obj (s, fs) -> Obj (s, List.map (subst_field sigma) fs)
| Variant fs -> Variant (List.map (subst_field sigma) fs)
| Mut t -> Mut (subst sigma t)
| Any -> Any
| Non -> Non
| Pre -> Pre
| Typ c -> Typ c (* NB: this is incorrect unless we ensure dom(sigma) \cap FV(c.kind) = {}
For now, we could do this by ensuring all type definitions are closed,
in particular, type components defined within the scope of an enclosing
type parameter cannot mention that parameter
(but can mention other (closed) type constructors).
*)
and subst_bind sigma tb =
{ tb with bound = subst sigma tb.bound}
and subst_field sigma {lab; typ; src} =
{lab; typ = subst sigma typ; src}
(*
and subst_kind sigma k =
match k with
| Def (tbs, t) ->
let sigma' = ConEnv.map (shift 0 (List.length tbs)) sigma in
Def (List.map (subst_bind sigma') tbs, subst sigma' t)
| Abs (tbs, t) ->
let sigma' = ConEnv.map (shift 0 (List.length tbs)) sigma in
Abs (List.map (subst_bind sigma') tbs, subst sigma' t)
*)
(* Handling binders *)
let close cs t =
if cs = [] then t else
let ts = List.mapi (fun i c -> Var (Cons.name c, i)) cs in
let sigma = List.fold_right2 ConEnv.add cs ts ConEnv.empty in
subst sigma t
let close_binds cs tbs =
if cs = [] then tbs else
List.map (fun tb -> { tb with bound = close cs tb.bound }) tbs
let rec open' i ts t =
match t with
| Prim _ -> t
| Var (_, j) -> if j < i then t else List.nth ts (j - i)
| Con (c, ts') -> Con (c, List.map (open' i ts) ts')
| Array t -> Array (open' i ts t)
| Tup ts' -> Tup (List.map (open' i ts) ts')
| Func (s, c, tbs, ts1, ts2) ->
let i' = i + List.length tbs in
Func (s, c, List.map (open_bind i' ts) tbs, List.map (open' i' ts) ts1, List.map (open' i' ts) ts2)
| Opt t -> Opt (open' i ts t)
| Async (s, t1, t2) -> Async (s, open' i ts t1, open' i ts t2)
| Obj (s, fs) -> Obj (s, List.map (open_field i ts) fs)
| Variant fs -> Variant (List.map (open_field i ts) fs)
| Mut t -> Mut (open' i ts t)
| Any -> Any
| Non -> Non
| Pre -> Pre
| Typ c -> Typ c
and open_bind i ts tb =
{tb with bound = open' i ts tb.bound}
and open_field i ts {lab; typ; src} =
{lab; typ = open' i ts typ; src}
(*
and open_kind i ts k =
match k with
| Def (tbs, t) ->
let i' = i + List.length tbs in
Def (List.map (open_bind i' ts) tbs, open' i' ts t)
| Abs (tbs, t) ->
let i' = i + List.length tbs in
Abs (List.map (open_bind i' ts) tbs, open' i' ts t)
*)
let open_ ts t =
if ts = [] then t else
open' 0 ts t
let open_binds tbs =
if tbs = [] then [] else
let cs = List.map (fun {var; _} -> Cons.fresh var (Abs ([], Pre))) tbs in
let ts = List.map (fun c -> Con (c, [])) cs in
let ks = List.map (fun {bound; _} -> Abs ([], open_ ts bound)) tbs in
List.iter2 set_kind cs ks;
ts
(* Normalization and Classification *)
let reduce tbs t ts =
assert (List.length ts = List.length tbs);
open_ ts t
let rec normalize = function
| Con (con, ts) as t ->
(match Cons.kind con with
| Def (tbs, t) -> normalize (reduce tbs t ts)
| _ -> t
)
| Mut t -> Mut (normalize t)
| t -> t
let rec promote = function
| Con (con, ts) ->
let Def (tbs, t) | Abs (tbs, t) = Cons.kind con
in promote (reduce tbs t ts)
| t -> t
(* Projections *)
let is_non = function Non -> true | _ -> false
let is_prim p = function Prim p' -> p = p' | _ -> false
let is_obj = function Obj _ -> true | _ -> false
let is_module = function Obj (Module, _) -> true | _ -> false
let is_variant = function Variant _ -> true | _ -> false
let is_array = function Array _ -> true | _ -> false
let is_opt = function Opt _ -> true | _ -> false
let is_tup = function Tup _ -> true | _ -> false
let is_unit = function Tup [] -> true | _ -> false
let is_pair = function Tup [_; _] -> true | _ -> false
let is_func = function Func _ -> true | _ -> false
let is_async = function Async _ -> true | _ -> false
let is_mut = function Mut _ -> true | _ -> false
let is_typ = function Typ _ -> true | _ -> false
let is_con = function Con _ -> true | _ -> false
let invalid s = raise (Invalid_argument ("Type." ^ s))
let as_prim p = function Prim p' when p = p' -> () | _ -> invalid "as_prim"
let as_obj = function Obj (s, tfs) -> s, tfs | _ -> invalid "as_obj"
let as_array = function Array t -> t | _ -> invalid "as_array"
let as_opt = function Opt t -> t | _ -> invalid "as_opt"
let as_variant = function Variant fs -> fs | _ -> invalid "as_variant"
let as_tup = function Tup ts -> ts | _ -> invalid "as_tup"
let as_unit = function Tup [] -> () | _ -> invalid "as_unit"
let as_pair = function Tup [t1; t2] -> t1, t2 | _ -> invalid "as_pair"
let as_func = function Func (s, c, tbs, ts1, ts2) -> s, c, tbs, ts1, ts2 | _ -> invalid "as_func"
let as_async = function Async (s, t1, t2) -> (s, t1, t2) | _ -> invalid "as_async"
let as_mut = function Mut t -> t | _ -> invalid "as_mut"
let as_immut = function Mut t -> t | t -> t
let as_typ = function Typ c -> c | _ -> invalid "as_typ"
let as_con = function Con (c, ts) -> c, ts | _ -> invalid "as_con"
let as_seq t =
match normalize t with
| Tup ts -> ts
| t -> [t]
let seq_of_tup t =
match normalize t with
| Tup ts -> ts
| t -> invalid "seq_of_tup"
let arity t =
match normalize t with
| Tup ts -> List.length ts
| t -> 1
let as_prim_sub p t = match promote t with
| Prim p' when p = p' -> ()
| Non -> ()
| _ -> invalid "as_prim_sub"
let as_obj_sub ls t = match promote t with
| Obj (s, tfs) -> s, tfs
| Non -> Object, List.map (fun l -> {lab = l; typ = Non; src = empty_src}) ls
| _ -> invalid "as_obj_sub"
let as_variant_sub l t = match promote t with
| Variant tfs -> tfs
| Non -> [{lab = l; typ = Non; src = empty_src}]
| _ -> invalid "as_variant_sub"
let as_array_sub t = match promote t with
| Array t -> t
| Non -> Non
| _ -> invalid "as_array_sub"
let as_opt_sub t = match promote t with
| Opt t -> t
| Prim Null -> Non
| Non -> Non
| _ -> invalid "as_opt_sub"
let as_tup_sub n t = match promote t with
| Tup ts -> ts
| Non -> Lib.List.make n Non
| _ -> invalid "as_tup_sub"
let as_unit_sub t = match promote t with
| Tup []
| Non -> ()
| _ -> invalid "as_unit_sub"
let as_pair_sub t = match promote t with
| Tup [t1; t2] -> t1, t2
| Non -> Non, Non
| _ -> invalid "as_pair_sub"
let as_func_sub default_s default_arity t = match promote t with
| Func (s, c, tbs, ts1, ts2) ->
s, tbs, seq ts1, codom c (fun () -> Var((List.hd tbs).var, 0)) ts2
| Non -> default_s, Lib.List.make default_arity {var = "X"; sort = Type; bound = Any}, Any, Non
| _ -> invalid "as_func_sub"
let as_mono_func_sub t = match promote t with
| Func (_, _, [], ts1, ts2) -> seq ts1, seq ts2
| Non -> Any, Non
| _ -> invalid "as_mono_func_sub"
let as_async_sub s default_scope t = match promote t with
| Async (s0, t1, t2) when s = s0 -> (t1, t2)
| Non -> default_scope, Non (* TBR *)
| _ -> invalid "as_async_sub"
let is_immutable_obj obj_type =
let _, fields = as_obj_sub [] obj_type in
List.for_all (fun f -> not (is_mut f.typ)) fields
let lookup_val_field_opt l tfs =
let is_lab = function {typ = Typ _; _} -> false | {lab; _} -> lab = l in
match List.find_opt is_lab tfs with
| Some tf -> Some tf.typ
| None -> None
let lookup_typ_field_opt l tfs =
let is_lab = function {typ = Typ _; lab; _} -> lab = l | _ -> false in
match List.find_opt is_lab tfs with
| Some {typ = Typ c; _} -> Some c
| _ -> None
let lookup_val_field l tfs =
match lookup_val_field_opt l tfs with
| Some t -> t
| None -> invalid "lookup_val_field"
let lookup_typ_field l tfs =
match lookup_typ_field_opt l tfs with
| Some c -> c
| _ -> invalid "lookup_typ_field"
let lookup_val_deprecation l tfs =
let is_lab = function {typ = Typ _; _} -> false | {lab; _} -> lab = l in
match List.find_opt is_lab tfs with
| Some {src = {depr; _}; _} -> depr
| None -> invalid "lookup_val_deprecation"
let lookup_typ_deprecation l tfs =
let is_lab = function {typ = Typ _; lab; _} -> lab = l | _ -> false in
match List.find_opt is_lab tfs with
| Some {src = {depr; _}; _} -> depr
| _ -> invalid "lookup_typ_deprecation"
(* Span *)
let rec span = function
| Var _ | Pre -> assert false
| Con _ as t -> span (promote t)
| Prim Null -> Some 1
| Prim Bool -> Some 2
| Prim (Nat | Int | Float | Text | Blob | Error | Principal | Region) -> None
| Prim (Nat8 | Int8) -> Some 0x100
| Prim (Nat16 | Int16) -> Some 0x10000
| Prim (Nat32 | Int32 | Nat64 | Int64 | Char) -> None (* for all practical purposes *)
| Obj _ | Tup _ | Async _ -> Some 1
| Variant fs -> Some (List.length fs)
| Array _ | Func _ | Any -> None
| Opt _ -> Some 2
| Mut t -> span t
| Non -> Some 0
| Typ _ -> Some 1
(* Collecting type constructors *)
(* Parameter `inTyp` controls whether to count a constructor, `c`, that only occurs as an argument of
`Typ` field, `Typ c`, but not in its own unfolding.
Set to false to avoid emitting redundant bindings in stable signature.
*)
let rec cons' inTyp t cs =
match t with
| Var _ | Prim _ | Any | Non | Pre -> cs
| Con (c, ts) ->
List.fold_right (cons' inTyp) ts (cons_con inTyp c cs)
| Opt t | Mut t | Array t ->
cons' inTyp t cs
| Async (_, t1, t2) ->
cons' inTyp t2 (cons' inTyp t1 cs)
| Tup ts -> List.fold_right (cons' inTyp) ts cs
| Func (s, c, tbs, ts1, ts2) ->
let cs = List.fold_right (cons_bind inTyp) tbs cs in
let cs = List.fold_right (cons' inTyp) ts1 cs in
List.fold_right (cons' inTyp) ts2 cs
| Obj (_, fs) | Variant fs ->
List.fold_right (cons_field inTyp) fs cs
| Typ c ->
if inTyp then
cons_con inTyp c cs
else
(* don't add c unless mentioned in Cons.kind c *)
cons_kind' inTyp (Cons.kind c) cs
and cons_con inTyp c cs =
if ConSet.mem c cs
then cs
else cons_kind' inTyp (Cons.kind c) (ConSet.add c cs)
and cons_bind inTyp tb cs =
cons' inTyp tb.bound cs
and cons_field inTyp {lab; typ; src} cs =
cons' inTyp typ cs
and cons_kind' inTyp k cs =
match k with
| Def (tbs, t)
| Abs (tbs, t) ->
cons' inTyp t (List.fold_right (cons_bind inTyp) tbs cs)
let cons t = cons' true t ConSet.empty
let cons_kind k = cons_kind' true k ConSet.empty
(* Checking for concrete types *)
module S = Set.Make (Ord)
(*
This check is a stop-gap measure until we have an IDL strategy that
allows polymorphic types, see #250. It is not what we desire for Motoko.
*)
let concrete t =
let seen = ref S.empty in
let rec go t =
S.mem t !seen ||
begin
seen := S.add t !seen;
match t with
| Var _ | Pre -> assert false
| Prim _ | Any | Non -> true
| Con (c, ts) ->
(match Cons.kind c with
| Abs _ -> false
| Def (_, t) -> go (open_ ts t) (* TBR this may fail to terminate *)
)
| Array t | Opt t | Mut t -> go t
| Async (s, t1, t2) -> go t2 (* t1 is a phantom type *)
| Tup ts -> List.for_all go ts
| Obj (_, fs) | Variant fs -> List.for_all (fun f -> go f.typ) fs
| Func (s, c, tbs, ts1, ts2) ->
let ts = open_binds tbs in
List.for_all go (List.map (open_ ts) ts1) &&
List.for_all go (List.map (open_ ts) ts2)
| Typ c -> (* assumes type defs are closed *)
true (* so we can transmit actors with typ fields *)
end
in go t
(* stable or shared *)
let serializable allow_mut t =
let seen = ref S.empty in
let rec go t =
S.mem t !seen ||
begin
seen := S.add t !seen;
match t with
| Var _ | Pre -> assert false
| Prim Error -> false
| Prim Region -> allow_mut (* stable, but not shared *)
| Any | Non | Prim _ | Typ _ -> true
| Async _ -> false
| Mut t -> allow_mut && go t
| Con (c, ts) ->
(match Cons.kind c with
| Abs _ -> false
| Def (_, t) -> go (open_ ts t) (* TBR this may fail to terminate *)
)
| Array t | Opt t -> go t
| Tup ts -> List.for_all go ts
| Obj (s, fs) ->
(match s with
| Actor -> true
| Module -> false (* TODO(1452) make modules sharable *)
| Object | Memory -> List.for_all (fun f -> go f.typ) fs)
| Variant fs -> List.for_all (fun f -> go f.typ) fs
| Func (s, c, tbs, ts1, ts2) -> is_shared_sort s
end
in go t
(* Find the first unshared subexpression in a type *)
let find_unshared t =
let seen = ref S.empty in
let rec go t =
if S.mem t !seen then None else
begin
seen := S.add t !seen;
match t with
| Var _ | Pre -> assert false
| Prim Error -> Some t
| Any | Non | Prim _ | Typ _ -> None
| Async _ | Mut _ -> Some t
| Con (c, ts) ->
(match Cons.kind c with
| Abs _ -> None
| Def (_, t) -> go (open_ ts t) (* TBR this may fail to terminate *)
)
| Array t | Opt t -> go t
| Tup ts -> List.find_map go ts
| Obj (s, fs) ->
(match s with
| Actor -> None
| Module -> Some t (* TODO(1452) make modules sharable *)
| Object ->
List.find_map (fun f -> go f.typ) fs
| Memory -> assert false)
| Variant fs -> List.find_map (fun f -> go f.typ) fs
| Func (s, c, tbs, ts1, ts2) ->
if is_shared_sort s
then None
else Some t
end
in go t
let is_shared_func typ =
match promote typ with
| Func (Shared _, _, _, _, _) -> true
| _ -> false
let is_local_async_func typ =
match promote typ with
| Func
(Local, Returns,
{ sort = Scope; _ }::_,
_,
[Async (Fut, Var (_ ,0), _)]) ->
true
| _ ->
false
let shared t = serializable false t
let stable t = serializable true t
(* Forward declare
TODO: haul string_of_typ before the lub/glb business, if possible *)
let str = ref (fun _ -> failwith "")
(* Equivalence & Subtyping *)
exception PreEncountered
exception Undecided
module SS = Set.Make (OrdPair)
let max_depth = 10_000
let rel_list d p rel eq xs1 xs2 =
try List.for_all2 (p d rel eq) xs1 xs2 with Invalid_argument _ -> false
let rec rel_typ d rel eq t1 t2 =
let d = d + 1 in
if d > max_depth then raise Undecided else
t1 == t2 || SS.mem (t1, t2) !rel || begin
rel := SS.add (t1, t2) !rel;
match t1, t2 with
(* Second-class types first, since they mustn't relate to Any/Non *)
| Pre, _ | _, Pre ->
raise PreEncountered
| Mut t1', Mut t2' ->
eq_typ d rel eq t1' t2'
| Typ c1, Typ c2 ->
eq_con d eq c1 c2
| Mut _, _ | _, Mut _
| Typ _, _ | _, Typ _ ->
false
| Any, Any ->
true
| _, Any when rel != eq ->
true
| Non, Non ->
true
| Non, _ when rel != eq ->
true
| Con (con1, ts1), Con (con2, ts2) ->
(match Cons.kind con1, Cons.kind con2 with
| Def (tbs, t), _ -> (* TBR this may fail to terminate *)
rel_typ d rel eq (open_ ts1 t) t2
| _, Def (tbs, t) -> (* TBR this may fail to terminate *)
rel_typ d rel eq t1 (open_ ts2 t)
| _ when Cons.eq con1 con2 ->
rel_list d eq_typ rel eq ts1 ts2
| Abs (tbs, t), _ when rel != eq ->
rel_typ d rel eq (open_ ts1 t) t2
| _ ->
false
)
| Con (con1, ts1), t2 ->
(match Cons.kind con1, t2 with
| Def (tbs, t), _ -> (* TBR this may fail to terminate *)
rel_typ d rel eq (open_ ts1 t) t2
| Abs (tbs, t), _ when rel != eq ->
rel_typ d rel eq (open_ ts1 t) t2
| _ -> false
)
| t1, Con (con2, ts2) ->
(match Cons.kind con2 with
| Def (tbs, t) -> (* TBR this may fail to terminate *)
rel_typ d rel eq t1 (open_ ts2 t)
| _ -> false
)
| Prim p1, Prim p2 when p1 = p2 ->
true
| Prim p1, Prim p2 when rel != eq ->
p1 = Nat && p2 = Int
| Obj (s1, tfs1), Obj (s2, tfs2) ->
s1 = s2 &&
rel_fields d rel eq tfs1 tfs2
| Array t1', Array t2' ->
rel_typ d rel eq t1' t2'
| Opt t1', Opt t2' ->
rel_typ d rel eq t1' t2'
| Prim Null, Opt t2' when rel != eq ->
true
| Variant fs1, Variant fs2 ->
rel_tags d rel eq fs1 fs2
| Tup ts1, Tup ts2 ->
rel_list d rel_typ rel eq ts1 ts2
| Func (s1, c1, tbs1, t11, t12), Func (s2, c2, tbs2, t21, t22) ->
s1 = s2 && c1 = c2 &&
(match rel_binds d eq eq tbs1 tbs2 with
| Some ts ->
rel_list d rel_typ rel eq (List.map (open_ ts) t21) (List.map (open_ ts) t11) &&
rel_list d rel_typ rel eq (List.map (open_ ts) t12) (List.map (open_ ts) t22)
| None -> false
)
| Async (s1, t11, t12), Async (s2, t21, t22) ->
s1 = s2 &&
eq_typ d rel eq t11 t21 &&
rel_typ d rel eq t12 t22
| _, _ -> false
end
and rel_fields d rel eq tfs1 tfs2 =
(* Assume that tfs1 and tfs2 are sorted. *)
match tfs1, tfs2 with
| [], [] ->
true
| _, [] when rel != eq ->
true
| tf1::tfs1', tf2::tfs2' ->
(match compare_field tf1 tf2 with
| 0 ->
rel_typ d rel eq tf1.typ tf2.typ &&
rel_fields d rel eq tfs1' tfs2'
| -1 when rel != eq ->
rel_fields d rel eq tfs1' tfs2
| _ -> false
)
| _, _ -> false
and rel_tags d rel eq tfs1 tfs2 =
(* Assume that tfs1 and tfs2 are sorted. *)
match tfs1, tfs2 with
| [], [] ->
true
| [], _ when rel != eq ->
true
| tf1::tfs1', tf2::tfs2' ->
(match compare_field tf1 tf2 with
| 0 ->
rel_typ d rel eq tf1.typ tf2.typ &&
rel_tags d rel eq tfs1' tfs2'
| +1 when rel != eq ->
rel_tags d rel eq tfs1 tfs2'
| _ -> false
)
| _, _ -> false
and rel_binds d rel eq tbs1 tbs2 =
let ts = open_binds tbs2 in
if rel_list d (rel_bind ts) rel eq tbs2 tbs1
then Some ts
else None
and rel_bind ts d rel eq tb1 tb2 =
tb1.sort == tb2.sort &&
rel_typ d rel eq (open_ ts tb1.bound) (open_ ts tb2.bound)
and eq_typ d rel eq t1 t2 = rel_typ d eq eq t1 t2
and eq t1 t2 : bool =
let eq = ref SS.empty in eq_typ 0 eq eq t1 t2
and sub t1 t2 : bool =
rel_typ 0 (ref SS.empty) (ref SS.empty) t1 t2
and eq_binds tbs1 tbs2 =
let eq = ref SS.empty in rel_binds 0 eq eq tbs1 tbs2 <> None
and eq_kind' eq k1 k2 : bool =
match k1, k2 with
| Def (tbs1, t1), Def (tbs2, t2)
| Abs (tbs1, t1), Abs (tbs2, t2) ->
(match rel_binds 0 eq eq tbs1 tbs2 with
| Some ts -> eq_typ 0 eq eq (open_ ts t1) (open_ ts t2)
| None -> false
)
| _ -> false
and eq_con d eq c1 c2 =
match Cons.kind c1, Cons.kind c2 with
| (Def (tbs1, t1)) as k1, (Def (tbs2, t2) as k2) ->
eq_kind' eq k1 k2
| Abs _, Abs _ ->
Cons.eq c1 c2
| Def (tbs1, t1), Abs (tbs2, t2)
| Abs (tbs2, t2), Def (tbs1, t1) ->
(match rel_binds d eq eq tbs1 tbs2 with
| Some ts -> eq_typ d eq eq (open_ ts t1) (Con (c2, ts))
| None -> false
)
let eq_kind k1 k2 : bool = eq_kind' (ref SS.empty) k1 k2
(* Compatibility *)
let compatible_list p co xs1 xs2 =
try List.for_all2 (p co) xs1 xs2 with Invalid_argument _ -> false
let rec compatible_typ co t1 t2 =
t1 == t2 || SS.mem (t1, t2) !co || begin
co := SS.add (t1, t2) !co;
match promote t1, promote t2 with
| Pre, _ | _, Pre ->
assert false
| Mut t1', Mut t2' ->
compatible_typ co t1' t2'
| Typ _, Typ _ ->
true
| Mut _, _ | _, Mut _
| Typ _, _ | _, Typ _ ->
false
| Any, Any ->
true
| Any, _ | _, Any ->
false
| Non, _ | _, Non ->
true
| Prim p1, Prim p2 when p1 = p2 ->
true
| Prim (Nat | Int), Prim (Nat | Int) ->
true
| Array t1', Array t2' ->
compatible_typ co t1' t2'
| Tup ts1, Tup ts2 ->
compatible_list compatible_typ co ts1 ts2
| Obj (s1, tfs1), Obj (s2, tfs2) ->
s1 = s2 &&
compatible_fields co tfs1 tfs2
| Opt t1', Opt t2' ->
compatible_typ co t1' t2'
| Prim Null, Opt _ | Opt _, Prim Null ->
true
| Variant tfs1, Variant tfs2 ->
compatible_tags co tfs1 tfs2
| Async (s1, t11, t12), Async (s2, t21, t22) ->
s1 = s2 &&
compatible_typ co t11 t21 && (* TBR *)
compatible_typ co t12 t22
| Func _, Func _ ->
true
| _, _ ->
false
end
and compatible_fields co tfs1 tfs2 =
(* Assume that tfs1 and tfs2 are sorted. *)
match tfs1, tfs2 with
| [], [] -> true
| tf1::tfs1', tf2::tfs2' ->
tf1.lab = tf2.lab && compatible_typ co tf1.typ tf2.typ &&
compatible_fields co tfs1' tfs2'
| _, _ -> false
and compatible_tags co tfs1 tfs2 =
(* Assume that tfs1 and tfs2 are sorted. *)
match tfs1, tfs2 with
| [], _ | _, [] -> true
| tf1::tfs1', tf2::tfs2' ->
match compare_field tf1 tf2 with
| -1 -> compatible_tags co tfs1' tfs2
| +1 -> compatible_tags co tfs1 tfs2'
| _ -> compatible_typ co tf1.typ tf2.typ && compatible_tags co tfs1' tfs2'
and compatible t1 t2 : bool =
compatible_typ (ref SS.empty) t1 t2
let opaque t = compatible t Any
(* Inhabitance *)
let rec inhabited_typ co t =
S.mem t !co || begin
co := S.add t !co;
match promote t with
| Pre -> assert false
| Non -> false
| Any | Prim _ | Array _ | Opt _ | Async _ | Func _ | Typ _ -> true
| Mut t' -> inhabited_typ co t'
| Tup ts -> List.for_all (inhabited_typ co) ts
| Obj (_, tfs) -> List.for_all (inhabited_field co) tfs
| Variant tfs -> List.exists (inhabited_field co) tfs
| Var _ -> true (* TODO(rossberg): consider bound *)
| Con (c, ts) ->
match Cons.kind c with
| Def (tbs, t') -> (* TBR this may fail to terminate *)
inhabited_typ co (open_ ts t')
| Abs (tbs, t') ->
inhabited_typ co t'
end
and inhabited_field co tf = inhabited_typ co tf.typ
and inhabited t : bool = inhabited_typ (ref S.empty) t
let rec singleton_typ co t =
S.mem t !co || begin
co := S.add t !co;
match normalize t with
| Pre -> assert false
| Prim Null | Any -> true
| Tup ts -> List.for_all (singleton_typ co) ts
| Obj ((Object|Memory|Module), fs) -> List.for_all (singleton_field co) fs
| Variant [f] -> singleton_field co f
| Non -> false
| Prim _ | Array _ | Opt _ | Async _ | Func _ | Typ _ -> false
| Mut t' -> false
| Obj (_, _) -> false
| Variant _ -> false
| Var _ -> false
| Con _ -> false
end
and singleton_field co tf = singleton_typ co tf.typ
and singleton t : bool = singleton_typ (ref S.empty) t
(* Least upper bound and greatest lower bound *)
module M = Map.Make (OrdPair)
exception Mismatch
let rec combine rel lubs glbs t1 t2 =
assert (rel == lubs || rel == glbs);
if t1 == t2 then t1 else
match M.find_opt (t1, t2) !rel with
| Some t -> t
| _ when eq t1 t2 ->
let t = if is_con t2 then t2 else t1 in
rel := M.add (t2, t1) t (M.add (t1, t2) t !rel);
t
| _ ->
match t1, t2 with
| Pre, _ | _, Pre ->
raise PreEncountered
| Mut _, _ | _, Mut _
| Typ _, _ | _, Typ _ ->
raise Mismatch
| Any, t | t, Any ->
if rel == lubs then Any else t
| Non, t | t, Non ->
if rel == lubs then t else Non
| Prim Nat, Prim Int
| Prim Int, Prim Nat ->
Prim (if rel == lubs then Int else Nat)
| Opt t1', Opt t2' ->
Opt (combine rel lubs glbs t1' t2')
| (Opt _ as t), (Prim Null as t')
| (Prim Null as t'), (Opt _ as t) ->
if rel == lubs then t else t'
| Array t1', Array t2' ->
(try Array (combine rel lubs glbs t1' t2')
with Mismatch -> if rel == lubs then Any else Non)
| Variant t1', Variant t2' ->
Variant (combine_tags rel lubs glbs t1' t2')
| Tup ts1, Tup ts2 when List.(length ts1 = length ts2) ->
Tup (List.map2 (combine rel lubs glbs) ts1 ts2)
| Obj (s1, tf1), Obj (s2, tf2) when s1 = s2 ->
(try Obj (s1, combine_fields rel lubs glbs tf1 tf2)
with Mismatch -> assert (rel == glbs); Non)
| Func (s1, c1, bs1, ts11, ts12), Func (s2, c2, bs2, ts21, ts22) when
s1 = s2 && c1 = c2 && eq_binds bs1 bs2 &&
List.(length ts11 = length ts21 && length ts12 = length ts22) ->
let ts = open_binds bs1 in
let cs = List.map (fun t -> fst (as_con t)) ts in
let opened = List.map (open_ ts) in
let closed = List.map (close cs) in
let rel' = if rel == lubs then glbs else lubs in
Func (
s1, c1, bs1,
closed (List.map2 (combine rel' lubs glbs) (opened ts11) (opened ts21)),
closed (List.map2 (combine rel lubs glbs) (opened ts12) (opened ts22))
)
| Async (s1, t11, t12), Async (s2, t21, t22) when s1 == s2 && eq t11 t21 ->
Async (s1, t11, combine rel lubs glbs t12 t22)
| Con _, _
| _, Con _ ->
if sub t1 t2 then
let t = if rel == glbs then t1 else t2 in
rel := M.add (t2, t1) t (M.add (t1, t2) t !rel);
t
else if sub t2 t1 then
let t = if rel == lubs then t1 else t2 in
rel := M.add (t2, t1) t (M.add (t1, t2) t !rel);
t
else
let op, expand =
if rel == lubs then "lub", promote else "glb", normalize in
let name = op ^ "<" ^ !str t1 ^ ", " ^ !str t2 ^ ">" in
let c = Cons.fresh name (Abs ([], Pre)) in
let t = Con (c, []) in
rel := M.add (t2, t1) t (M.add (t1, t2) t !rel);
let t' =
(* When taking the glb of an abstract con and an incompatible type,
* normalisation will no further simplify t1 nor t2, so that t itself
* is returned via the extended relation. In that case, bottom is
* the correct result.
*)
match combine rel lubs glbs (expand t1) (expand t2) with
| t' when t' == t -> assert (rel == glbs); Non
| t' -> t'
in
set_kind c (Def ([], t'));
t'
| _, _ ->
if rel == lubs then Any else Non
and cons_if b x xs = if b then x::xs else xs
and combine_fields rel lubs glbs fs1 fs2 =
match fs1, fs2 with
| _, [] -> if rel == lubs then [] else fs1
| [], _ -> if rel == lubs then [] else fs2
| f1::fs1', f2::fs2' ->
match compare_field f1 f2 with
| -1 -> cons_if (rel == glbs) f1 (combine_fields rel lubs glbs fs1' fs2)
| +1 -> cons_if (rel == glbs) f2 (combine_fields rel lubs glbs fs1 fs2')
| _ ->
match combine rel lubs glbs f1.typ f2.typ with
| typ ->
{lab = f1.lab; typ; src = empty_src} :: combine_fields rel lubs glbs fs1' fs2'
| exception Mismatch when rel == lubs ->
combine_fields rel lubs glbs fs1' fs2'
and combine_tags rel lubs glbs fs1 fs2 =
match fs1, fs2 with
| _, [] -> if rel == lubs then fs1 else []
| [], _ -> if rel == lubs then fs2 else []
| f1::fs1', f2::fs2' ->
match compare_field f1 f2 with
| -1 -> cons_if (rel == lubs) f1 (combine_tags rel lubs glbs fs1' fs2)
| +1 -> cons_if (rel == lubs) f2 (combine_tags rel lubs glbs fs1 fs2')
| _ ->
let typ = combine rel lubs glbs f1.typ f2.typ in
{lab = f1.lab; typ; src = empty_src} :: combine_tags rel lubs glbs fs1' fs2'
let lub t1 t2 = let lubs = ref M.empty in combine lubs lubs (ref M.empty) t1 t2
let glb t1 t2 = let glbs = ref M.empty in combine glbs (ref M.empty) glbs t1 t2
(* Environments *)
module Env = Env.Make(String)
(* Scopes *)
let scope_var var = "$" ^ var
let default_scope_var = scope_var ""
let scope_bound = Any
let scope_bind = { var = default_scope_var; sort = Scope; bound = scope_bound }
(* Well-known fields *)
let motoko_async_helper_fld =
{ lab = "__motoko_async_helper";
typ = Func(Shared Write, Promises, [scope_bind], [Prim Nat32], []);
src = empty_src;
}
let motoko_stable_var_info_fld =
{ lab = "__motoko_stable_var_info";
typ =
Func(Shared Query, Promises, [scope_bind], [],
[ Obj(Object, [{lab = "size"; typ = nat64; src = empty_src}]) ]);
src = empty_src;
}
let motoko_gc_trigger_fld =
{ lab = "__motoko_gc_trigger";
typ = Func(Shared Write, Promises, [scope_bind], [], []);
src = empty_src;
}
let motoko_runtime_information_type =
Obj(Object, [
(* Fields must be sorted by label *)
{lab = "callbackTableCount"; typ = nat; src = empty_src};
{lab = "callbackTableSize"; typ = nat; src = empty_src};
{lab = "compilerVersion"; typ = text; src = empty_src};
{lab = "garbageCollector"; typ = text; src = empty_src};
{lab = "heapSize"; typ = nat; src = empty_src};
{lab = "logicalStableMemorySize"; typ = nat; src = empty_src};
{lab = "maxLiveSize"; typ = nat; src = empty_src};
{lab = "maxStackSize"; typ = nat; src = empty_src};
{lab = "memorySize"; typ = nat; src = empty_src};
{lab = "reclaimed"; typ = nat; src = empty_src};
{lab = "rtsVersion"; typ = text; src = empty_src};
{lab = "sanityChecks"; typ = bool; src = empty_src};
{lab = "stableMemorySize"; typ = nat; src = empty_src};
{lab = "totalAllocation"; typ = nat; src = empty_src};
])
let motoko_runtime_information_fld =
{ lab = "__motoko_runtime_information";
typ = Func(Shared Query, Promises, [scope_bind], [],
[ motoko_runtime_information_type ]);
src = empty_src;
}
let well_known_actor_fields = [
motoko_async_helper_fld;
motoko_stable_var_info_fld;
motoko_gc_trigger_fld;
]
let decode_msg_typ tfs =
Variant
(List.sort compare_field (List.filter_map (fun tf ->
match normalize tf.typ with
| Func(Shared (Write | Query), _, tbs, ts1, ts2) ->
Some { tf with
typ =
Func(Local, Returns, [], [],
List.map (open_ (List.map (fun _ -> Non) tbs)) ts1);
src = empty_src }
| _ -> None)
tfs))
let canister_settings_typ =
obj Object [
"settings",
Opt (
obj Object [
("controllers", Opt (Array principal));
("compute_allocation", Opt nat);
("memory_allocation", Opt nat);
("freezing_threshold", Opt nat)])]
let wasm_memory_persistence_typ =
sum [
("Keep", unit);
("Replace", unit);
]
let upgrade_with_persistence_option_typ =
obj Object [
("wasm_memory_persistence", wasm_memory_persistence_typ);
("canister", obj Actor []);
]
let install_arg_typ =
sum [
("new", canister_settings_typ);
("install", principal);
("reinstall", obj Actor []);
("upgrade", obj Actor []);
("upgrade_with_persistence", upgrade_with_persistence_option_typ );
]
let install_typ ts actor_typ =
Func(Local, Returns, [],
[ install_arg_typ ],
[ Func(Local, Returns, [scope_bind], ts, [Async (Fut, Var (default_scope_var, 0), actor_typ)]) ])
(* Pretty printing *)
let string_of_async_sort = function
| Fut -> ""
| Cmp -> "*"
let string_of_prim = function
| Null -> "Null"
| Bool -> "Bool"
| Nat -> "Nat"
| Nat8 -> "Nat8"
| Nat16 -> "Nat16"
| Nat32 -> "Nat32"
| Nat64 -> "Nat64"
| Int -> "Int"
| Int8 -> "Int8"
| Int16 -> "Int16"
| Int32 -> "Int32"
| Int64 -> "Int64"
| Float -> "Float"
| Char -> "Char"
| Text -> "Text"
| Blob -> "Blob"
| Error -> "Error"
| Principal -> "Principal"
| Region -> "Region"
let string_of_obj_sort = function
| Object -> ""
| Module -> "module "
| Actor -> "actor "
| Memory -> "memory "
let string_of_func_sort = function
| Local -> ""
| Shared Write -> "shared "
| Shared Query -> "shared query "
| Shared Composite -> "shared composite query " (* TBR *)
(* PrettyPrinter configurations *)
module type PrettyConfig = sig
val show_stamps : bool
val con_sep : string
val par_sep : string
end
module ShowStamps = struct
let show_stamps = true
let con_sep = "__" (* TODO: revert to "/" *)
let par_sep = "_"
end
module ElideStamps = struct
let show_stamps = false
let con_sep = ShowStamps.con_sep
let par_sep = ShowStamps.par_sep
end
module ParseableStamps = struct
let show_stamps = true
let con_sep = "__"
let par_sep = "_"
end
module MakePretty(Cfg : PrettyConfig) = struct
open Format
let pr = pp_print_string
let comma ppf () = fprintf ppf ",@ "
let semi ppf () = fprintf ppf ";@ "
module StringSet = Set.Make(String)
let vs_of_cs cs =
let names = ConSet.fold (fun c ns -> StringSet.add (Cons.name c) ns) cs StringSet.empty in
StringSet.fold (fun n vs -> (n, 0)::vs) names []
let string_of_var (x, i) =
if i = 0 then sprintf "%s" x else sprintf "%s%s%d" x Cfg.par_sep i
let string_of_con c = Cons.to_string Cfg.show_stamps Cfg.con_sep c
let rec can_sugar = function
| Func(s, Promises, tbs, ts1, ts2)
| Func((Shared _ as s), Returns, tbs, ts1, ([] as ts2))
| Func(s, Returns, (_::_ as tbs), ts1, ([Async (_, Var(_, 0),_)] as ts2)) ->
List.for_all (fun tb -> can_omit 0 tb.bound) tbs &&
List.for_all (can_omit 0) ts1 &&
List.for_all (can_omit 0) ts2
| _ -> false
and can_omit n t =
let rec go i = function
| Var (_, j) -> i <> j
| Pre -> assert false
| Prim _ | Any | Non -> true
| Con (c, ts) -> List.for_all (go i ) ts
| Array t | Opt t | Mut t -> go i t
| Async (s, Var (_, j), t2) when j = i && i <= n -> go i t2 (* t1 is a phantom type *)
| Async (s, t1, t2) -> go i t1 && go i t2
| Tup ts -> List.for_all (go i ) ts
| Obj (_, fs) | Variant fs -> List.for_all (fun f -> go i f.typ) fs
| Func (s, c, tbs, ts1, ts2) ->
let i' = i+List.length tbs in
List.for_all (fun tb -> go i' tb.bound) tbs &&
List.for_all (go i') ts1 &&
List.for_all (go i') ts2
| Typ c -> true (* assumes type defs are closed *)
in go n t
let rec pp_typ_obj vs ppf o =
match o with
| (Object, fs) ->
fprintf ppf "@[<hv 2>{@;<0 0>%a@;<0 -2>}@]"
(pp_print_list ~pp_sep:semi (pp_field vs)) fs
| (s, fs) ->
fprintf ppf "@[<hv 2>%s{@;<0 0>%a@;<0 -2>}@]"
(string_of_obj_sort s)
(pp_print_list ~pp_sep:semi (pp_field vs)) fs
and pp_typ_variant vs ppf fs =
match fs with
| [] -> pr ppf "{#}"
| fs ->
fprintf ppf "@[<hv 2>{@;<0 0>%a@;<0 -2>}@]"
(pp_print_list ~pp_sep:semi (pp_tag vs)) fs
and pp_typ_nullary vs ppf t =
match t with
| Tup ts ->
fprintf ppf "@[<1>(%a%s)@]"
(pp_print_list ~pp_sep:comma (pp_typ' vs)) ts
(if List.length ts = 1 then "," else "")
| Pre -> pr ppf "???"
| Any -> pr ppf "Any"
| Non -> pr ppf "None"
| Prim p -> pr ppf (string_of_prim p)
| Var (s, i) ->
pr ppf (try string_of_var (List.nth vs i) with _ -> Printf.sprintf "??? %s %i" s i)
| Con (c, []) -> pr ppf (string_of_con c)
| Con (c, ts) ->
fprintf ppf "@[%s<@[<1>%a@]>@]" (string_of_con c)
(pp_print_list ~pp_sep:comma (pp_typ' vs)) ts
| Array (Mut t) ->
fprintf ppf "@[<1>[var %a]@]" (pp_typ' vs) t
| Array t ->
fprintf ppf "@[<1>[%a]@]" (pp_typ' vs) t
| Obj (Object, fs) ->
pp_typ_obj vs ppf (Object, fs)
| Variant fs ->
pp_typ_variant vs ppf fs
| t ->
(* In the parser, this case is subsumed by the grammar production for `LPAR .. RPAR` *)
fprintf ppf "@[<1>(%a)@]" (pp_typ' vs) t
and pp_typ_un vs ppf t =
match t with
| Opt t ->
fprintf ppf "@[<1>?%a@]" (pp_typ_un vs) t
| t ->
pp_typ_nullary vs ppf t
and pp_typ_pre vs ppf t =
match t with
(* No case for grammar production `PRIM s` *)
| Async (s, t1, t2) ->
if Cfg.show_stamps then
match t1 with
| Var(_, n) when fst (List.nth vs n) = "" ->
fprintf ppf "@[<2>async%s@ %a@]" (string_of_async_sort s) (pp_typ_pre vs) t2
| _ ->
fprintf ppf "@[<2>async%s<%a>@ %a@]"
(string_of_async_sort s)
(pp_typ' vs) t1
(pp_typ_pre vs) t2
else fprintf ppf "@[<2>async%s@ %a@]" (string_of_async_sort s) (pp_typ_pre vs) t2
| Obj ((Module | Actor | Memory) as os, fs) ->
pp_typ_obj vs ppf (os, fs)
| t ->
pp_typ_un vs ppf t
and sequence pp ppf ts =
match ts with
| [Tup _] ->
fprintf ppf "@[<1>(%a)@]" pp (seq ts)
| ts ->
pp ppf (seq ts)
and pp_typ_nobin vs ppf t =
match t with
| Func (s, c, tbs, ts1, ts2) ->
let sugar = can_sugar t in
let vs' = vars_of_binds vs tbs in
let vs'', tbs' =
if sugar then
List.tl vs', List.tl tbs
else
match tbs with
| { sort = Scope; _ } :: _ -> ("system", List.hd vs' |> snd) :: List.tl vs', tbs
| _ -> vs', tbs
in
let vs'vs = vs' @ vs in
fprintf ppf "@[<2>%s%a%a ->@ %a@]"
(string_of_func_sort s)
(pp_binds vs'vs vs'') tbs'
(sequence (pp_typ_un vs'vs)) ts1
(pp_control_cod sugar c vs'vs) ts2
| t ->
pp_typ_pre vs ppf t
and pp_control_cod sugar c vs ppf ts =
match c, ts with
(* sugar *)
| Returns, [Async (s, _, t)] when sugar ->
fprintf ppf "@[<2>async%s@ %a@]" (string_of_async_sort s) (pp_typ_pre vs) t
| Promises, ts ->
fprintf ppf "@[<2>async@ %a@]" (sequence (pp_typ_pre vs)) ts
| Returns, _ ->
sequence (pp_typ_nobin vs) ppf ts
| Replies, _ ->
fprintf ppf "@[<2>replies@ %a@]" (sequence (pp_typ_nobin vs)) ts
and pp_typ' vs ppf t =
match t with
(* special, additional cases for printing second-class types *)
| Typ c ->
fprintf ppf "@[<1>=@ @[(type@ %a)@]@]" (pp_kind' vs) (Cons.kind c)
| Mut t ->
fprintf ppf "@[<1>var@ %a@]" (pp_typ_un vs) t
(* No cases for syntactic _ And _ & _ Or _ (already desugared) *)
| t -> pp_typ_nobin vs ppf t
and pp_field vs ppf {lab; typ; src} =
match typ with
| Typ c ->
let op, sbs, st = pps_of_kind' vs (Cons.kind c) in
fprintf ppf "@[<2>type %s%a %s@ %a@]" lab sbs () op st ()
| Mut t' ->
fprintf ppf "@[<2>var %s :@ %a@]" lab (pp_typ' vs) t'
| _ ->
fprintf ppf "@[<2>%s :@ %a@]" lab (pp_typ' vs) typ
and pp_stab_field vs ppf {lab; typ; src} =
match typ with
| Mut t' ->
fprintf ppf "@[<2>stable var %s :@ %a@]" lab (pp_typ' vs) t'
| _ ->
fprintf ppf "@[<2>stable %s :@ %a@]" lab (pp_typ' vs) typ
and pp_tag vs ppf {lab; typ; src} =
match typ with
| Tup [] -> fprintf ppf "#%s" lab
| _ ->
fprintf ppf "@[<2>#%s :@ %a@]" lab
(pp_typ' vs) typ
and vars_of_binds vs bs =
List.map (fun b -> name_of_var vs (b.var, 0)) bs
and name_of_var vs v =
match vs with
| [] -> v
| v'::vs' -> name_of_var vs' (if fst v = fst v' then (fst v, snd v + 1) else v)
and pp_bind vs ppf (v, {bound; _}) =
if bound = Any then
pr ppf (string_of_var v)
else
fprintf ppf "%s <: %a"
(string_of_var v)
(pp_typ' vs) bound
and pp_binds vs vs' ppf = function
| [] -> ()
| tbs ->
fprintf ppf "@[<1><%a>@]"
(pp_print_list ~pp_sep:comma (pp_bind vs)) (List.combine vs' tbs)
and pps_of_kind' vs k =
let op, tbs, t =
match k with
| Def (tbs, t) -> "=", tbs, t
| Abs (tbs, t) -> "<:", tbs, t
in
let vs' = vars_of_binds vs tbs in
let vs'vs = vs'@vs in
op,
(fun ppf () -> pp_binds vs'vs vs' ppf tbs),
(fun ppf () -> pp_typ' vs'vs ppf t)
and pps_of_kind k =
let cs = cons_kind k in
let vs = vs_of_cs cs in
pps_of_kind' vs k
and pp_kind' vs ppf k =
let op, sbs, st = pps_of_kind' vs k in
fprintf ppf "%s %a%a" op sbs () st ()
and pp_kind ppf k =
let cs = cons_kind k in
let vs = vs_of_cs cs in
pp_kind' vs ppf k
and pp_stab_sig ppf sig_ =
let cs = List.fold_right
(cons_field false)
(* false here ^ means ignore unreferenced Typ c components
that would produce unreferenced bindings when unfolded *)
sig_ ConSet.empty in
let vs = vs_of_cs cs in
let ds =
let cs' = ConSet.filter (fun c ->
match Cons.kind c with
| Def ([], Prim p) when string_of_con c = string_of_prim p -> false
| Def ([], Any) when string_of_con c = "Any" -> false
| Def ([], Non) when string_of_con c = "None" -> false
| Def _ -> true
| Abs _ -> false) cs in
ConSet.elements cs' in
let fs =
List.sort compare_field
(List.map (fun c ->
{ lab = string_of_con c;
typ = Typ c;
src = empty_src }) ds)
in
let pp_stab_fields ppf sig_ =
fprintf ppf "@[<v 2>%s{@;<0 0>%a@;<0 -2>}@]"
(string_of_obj_sort Actor)
(pp_print_list ~pp_sep:semi (pp_stab_field vs)) sig_
in
fprintf ppf "@[<v 0>%a%a%a;@]"
(pp_print_list ~pp_sep:semi (pp_field vs)) fs
(if fs = [] then fun ppf () -> () else semi) ()
pp_stab_fields sig_
let rec pp_typ_expand' vs ppf t =
match t with
| Con (c, ts) ->
(match Cons.kind c with
| Abs _ -> pp_typ' vs ppf t
| Def _ ->
match normalize t with
| Prim _ | Any | Non -> pp_typ' vs ppf t
| t' -> fprintf ppf "%a = %a"
(pp_typ' vs) t
(pp_typ_expand' vs) t'
)
| _ -> pp_typ' vs ppf t
let pp_lab = pr
let pp_typ ppf t =
let vs = vs_of_cs (cons t) in
pp_typ' vs ppf t
let pp_typ_expand ppf t =
let vs = vs_of_cs (cons t) in
pp_typ_expand' vs ppf t
let string_of_typ typ : string =
Lib.Format.with_str_formatter (fun ppf ->
pp_typ ppf) typ
let string_of_kind k : string =
Lib.Format.with_str_formatter (fun ppf ->
pp_kind ppf) k
let strings_of_kind k : string * string * string =
let op, sbs, st = pps_of_kind k in
op, Lib.Format.with_str_formatter sbs (), Lib.Format.with_str_formatter st ()
let string_of_typ_expand typ : string =
Lib.Format.with_str_formatter (fun ppf ->
pp_typ_expand ppf) typ
end
module type Pretty = sig
val pp_lab : Format.formatter -> lab -> unit
val pp_typ : Format.formatter -> typ -> unit
val pp_typ_expand : Format.formatter -> typ -> unit
val pps_of_kind : kind ->
string *
(Format.formatter -> unit -> unit) *
(Format.formatter -> unit -> unit)
val string_of_con : con -> string
val string_of_typ : typ -> string
val string_of_kind : kind -> string
val strings_of_kind : kind -> string * string * string
val string_of_typ_expand : typ -> string
end
include MakePretty(ShowStamps)
let _ = str := string_of_typ
(* Stable signatures *)
let rec match_stab_sig tfs1 tfs2 =
(* Assume that tfs1 and tfs2 are sorted. *)
match tfs1, tfs2 with
| [], _ | _, [] ->
(* same amount of fields, new fields, or dropped fields ok *)
true
| tf1::tfs1', tf2::tfs2' ->
(match compare_field tf1 tf2 with
| 0 ->
sub (as_immut tf1.typ) (as_immut tf2.typ) &&
match_stab_sig tfs1' tfs2'
| -1 ->
(* dropped field ok *)
match_stab_sig tfs1' tfs2
| _ ->
(* new field ok *)
match_stab_sig tfs1 tfs2'
)
let string_of_stab_sig fields : string =
let module Pretty = MakePretty(ParseableStamps) in
"// Version: 1.0.0\n" ^
Format.asprintf "@[<v 0>%a@]@\n" (fun ppf -> Pretty.pp_stab_sig ppf) fields