1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
open Ir_def
open Mo_def
open Mo_types
open Mo_values
open Syntax
open Source
open Operator
module S = Syntax
module I = Ir
module T = Type
open Construct
(*
As a first scaffolding, we translate imported files into let-bound
variables with a special, non-colliding name, which we sometimes
want to recognize for better user experience.
*)
let id_of_full_path (fp : string) : string =
"file$" ^ fp
(* Combinators used in the desugaring *)
let apply_sign op l = Syntax.(match op, l with
| PosOp, l -> l
| NegOp, (NatLit n | IntLit n) -> IntLit Numerics.Int.(sub zero n)
| NegOp, Int8Lit n -> Int8Lit Numerics.Int_8.(sub zero n)
| NegOp, Int16Lit n -> Int16Lit Numerics.Int_16.(sub zero n)
| NegOp, Int32Lit n -> Int32Lit Numerics.Int_32.(sub zero n)
| NegOp, Int64Lit n -> Int64Lit Numerics.Int_64.(sub zero n)
| _, _ -> raise (Invalid_argument "Invalid signed pattern")
)
let phrase f x = { x with it = f x.it }
let typ_note : S.typ_note -> Note.t =
fun S.{ note_typ; note_eff; _ } -> Note.{ def with typ = note_typ; eff = note_eff }
let phrase' f x =
{ x with it = f x.at x.note x.it }
let typed_phrase' f x =
let n' = typ_note x.note in
{ x with it = f x.at n' x.it; note = n' }
let rec exps es = List.map exp es
and exp e =
(* We short-cut AnnotE here, so that we get the position of the inner expression *)
match e.it with
| S.AnnotE (e', t) -> exp e'
| _ -> typed_phrase' exp' e
and exp' at note = function
| S.VarE i -> I.VarE ((match i.note with Var -> I.Var | Const -> I.Const), i.it)
| S.ActorUrlE e ->
I.(PrimE (ActorOfIdBlob note.Note.typ, [url e at]))
| S.LitE l -> I.LitE (lit !l)
| S.UnE (ot, o, e) ->
I.PrimE (I.UnPrim (!ot, o), [exp e])
| S.BinE (ot, e1, o, e2) ->
I.PrimE (I.BinPrim (!ot, o), [exp e1; exp e2])
| S.RelE (ot, e1, Operator.NeqOp, e2) ->
(notE (primE (I.RelPrim (!ot, Operator.EqOp)) [exp e1; exp e2])).it
| S.RelE (ot, e1, o, e2) ->
I.PrimE (I.RelPrim (!ot, o), [exp e1; exp e2])
| S.ShowE (ot, e) ->
I.PrimE (I.ShowPrim !ot, [exp e])
| S.ToCandidE es ->
let args = exps es in
let ts = List.map (fun e -> e.note.Note.typ) args in
(primE (I.SerializePrim ts) [seqE args]).it
| S.FromCandidE e ->
begin match T.normalize note.Note.typ with
| T.Opt t -> (primE (I.DeserializeOptPrim (T.as_seq t)) [exp e]).it
| _ -> assert false
end
| S.TupE es -> (tupE (exps es)).it
| S.ProjE (e, i) -> (projE (exp e) i).it
| S.OptE e -> (optE (exp e)).it
| S.DoOptE e ->
I.LabelE ("!", note.Note.typ, optE (exp e))
| S.BangE e ->
let ty = note.Note.typ in
let v = fresh_var "v" ty in
(switch_optE (exp e)
(* case null : *)
(breakE "!" (nullE()))
(* case ? v : *)
(varP v) (varE v) ty).it
| S.ObjBlockE (s, (self_id_opt, _), dfs) ->
obj_block at s self_id_opt dfs note.Note.typ
| S.ObjE (bs, efs) ->
obj note.Note.typ efs bs
| S.TagE (c, e) -> (tagE c.it (exp e)).it
| S.DotE (e, x) when T.is_array e.note.S.note_typ ->
(array_dotE e.note.S.note_typ x.it (exp e)).it
| S.DotE (e, x) when T.is_prim T.Blob e.note.S.note_typ ->
(blob_dotE x.it (exp e)).it
| S.DotE (e, x) when T.is_prim T.Text e.note.S.note_typ ->
(text_dotE x.it (exp e)).it
| S.DotE (e, x) ->
begin match T.as_obj_sub [x.it] e.note.S.note_typ with
| T.Actor, _ -> I.PrimE (I.ActorDotPrim x.it, [exp e])
| _ -> I.PrimE (I.DotPrim x.it, [exp e])
end
| S.AssignE (e1, e2) -> I.AssignE (lexp e1, exp e2)
| S.ArrayE (m, es) ->
let t = T.as_array note.Note.typ in
I.PrimE (I.ArrayPrim (mut m, T.as_immut t), exps es)
| S.IdxE (e1, e2) -> I.PrimE (I.IdxPrim, [exp e1; exp e2])
| S.FuncE (name, sp, tbs, p, _t_opt, _, e) ->
let s, po = match sp.it with
| T.Local -> (T.Local, None)
| T.Shared (ss, {it = S.WildP; _} ) -> (* don't bother with ctxt pat *)
(T.Shared ss, None)
| T.Shared (ss, sp) -> (T.Shared ss, Some sp) in
let args, wrap, control, res_tys = to_args note.Note.typ po p in
let tbs' = typ_binds tbs in
let vars = List.map (fun (tb : I.typ_bind) -> T.Con (tb.it.I.con, [])) tbs' in
let tys = List.map (T.open_ vars) res_tys in
I.FuncE (name, s, control, tbs', args, tys, wrap (exp e))
(* Primitive functions in the prelude have particular shapes *)
| S.CallE ({it=S.AnnotE ({it=S.PrimE p;_}, _);note;_}, _, e)
when Lib.String.chop_prefix "num_conv" p <> None ->
begin match String.split_on_char '_' p with
| ["num"; "conv"; s1; s2] ->
let p1 = Type.prim s1 in
let p2 = Type.prim s2 in
I.PrimE (I.NumConvTrapPrim (p1, p2), [exp e])
| _ -> assert false
end
| S.CallE ({it=S.AnnotE ({it=S.PrimE p;_}, _);note;_}, _, e)
when Lib.String.chop_prefix "num_wrap" p <> None ->
begin match String.split_on_char '_' p with
| ["num"; "wrap"; s1; s2] ->
let p1 = Type.prim s1 in
let p2 = Type.prim s2 in
I.PrimE (I.NumConvWrapPrim (p1, p2), [exp e])
| _ -> assert false
end
| S.CallE ({it=S.AnnotE ({it=S.PrimE "decodeUtf8";_},_);_}, _, e) ->
I.PrimE (I.DecodeUtf8, [exp e])
| S.CallE ({it=S.AnnotE ({it=S.PrimE "encodeUtf8";_},_);_}, _, e) ->
I.PrimE (I.EncodeUtf8, [exp e])
| S.CallE ({it=S.AnnotE ({it=S.PrimE "cast";_}, _);note;_}, _, e) ->
begin match note.S.note_typ with
| T.Func (T.Local, T.Returns, [], ts1, ts2) ->
I.PrimE (I.CastPrim (T.seq ts1, T.seq ts2), [exp e])
| _ -> assert false
end
| S.CallE ({it=S.AnnotE ({it=S.PrimE "serialize";_}, _);note;_}, _, e) ->
begin match note.S.note_typ with
| T.Func (T.Local, T.Returns, [], ts1, ts2) ->
I.PrimE (I.SerializePrim ts1, [exp e])
| _ -> assert false
end
| S.CallE ({it=S.AnnotE ({it=S.PrimE "deserialize";_}, _);note;_}, _, e) ->
begin match note.S.note_typ with
| T.Func (T.Local, T.Returns, [], ts1, ts2) ->
I.PrimE (I.DeserializePrim ts2, [exp e])
| _ -> assert false
end
| S.CallE ({it=S.AnnotE ({it=S.PrimE "caller";_},_);_}, _, {it=S.TupE es;_}) ->
assert (es = []);
I.PrimE (I.ICCallerPrim, [])
| S.CallE ({it=S.AnnotE ({it=S.PrimE "deadline";_},_);_}, _, {it=S.TupE es;_}) ->
assert (es = []);
I.PrimE (I.ICReplyDeadlinePrim, [])
| S.CallE ({it=S.AnnotE ({it=S.PrimE "time";_},_);_}, _, {it=S.TupE es;_}) ->
assert (es = []);
I.PrimE (I.SystemTimePrim, [])
(* Cycles *)
| S.CallE ({it=S.AnnotE ({it=S.PrimE "cyclesBalance";_},_);_}, _, {it=S.TupE es;_}) ->
assert (es = []);
I.PrimE (I.SystemCyclesBalancePrim, [])
| S.CallE ({it=S.AnnotE ({it=S.PrimE "cyclesAvailable";_},_);_}, _, {it=S.TupE es;_}) ->
assert (es = []);
I.PrimE (I.SystemCyclesAvailablePrim, [])
| S.CallE ({it=S.AnnotE ({it=S.PrimE "cyclesRefunded";_},_);_}, _, {it=S.TupE es;_}) ->
assert (es = []);
I.PrimE (I.SystemCyclesRefundedPrim, [])
| S.CallE ({it=S.AnnotE ({it=S.PrimE "cyclesAccept";_},_);_}, _, e) ->
I.PrimE (I.SystemCyclesAcceptPrim, [exp e])
| S.CallE ({it=S.AnnotE ({it=S.PrimE "cyclesAdd";_},_);_}, _, e) ->
I.PrimE (I.SystemCyclesAddPrim, [exp e])
| S.CallE ({it=S.AnnotE ({it=S.PrimE "cyclesBurn";_},_);_}, _, e) ->
I.PrimE (I.SystemCyclesBurnPrim, [exp e])
(* Certified data *)
| S.CallE ({it=S.AnnotE ({it=S.PrimE "setCertifiedData";_},_);_}, _, e) ->
I.PrimE (I.SetCertifiedData, [exp e])
| S.CallE ({it=S.AnnotE ({it=S.PrimE "getCertificate";_},_);_}, _, {it=S.TupE es;_}) ->
I.PrimE (I.GetCertificate, [])
(* Other *)
| S.CallE ({it=S.AnnotE ({it=S.PrimE p;_},_);_}, _, {it=S.TupE es;_}) ->
I.PrimE (I.OtherPrim p, exps es)
| S.CallE ({it=S.AnnotE ({it=S.PrimE p;_},_);_}, _, e) ->
I.PrimE (I.OtherPrim p, [exp e])
(* Optimizing array.size() *)
| S.CallE ({it=S.DotE (e1, proj); _}, _, {it=S.TupE [];_})
when T.is_array e1.note.S.note_typ && proj.it = "size" ->
I.PrimE (I.OtherPrim "array_len", [exp e1])
| S.CallE ({it=S.DotE (e1, proj); _}, _, {it=S.TupE [];_})
when T.(is_prim Text) e1.note.S.note_typ && proj.it = "size" ->
I.PrimE (I.OtherPrim "text_len", [exp e1])
| S.CallE ({it=S.DotE (e1, proj); _}, _, {it=S.TupE [];_})
when T.(is_prim Blob) e1.note.S.note_typ && proj.it = "size" ->
I.PrimE (I.OtherPrim "blob_size", [exp e1])
(* Normal call *)
| S.CallE (e1, inst, e2) ->
I.PrimE (I.CallPrim inst.note, [exp e1; exp e2])
| S.BlockE [] -> (unitE ()).it
| S.BlockE [{it = S.ExpD e; _}] -> (exp e).it
| S.BlockE ds -> I.BlockE (block (T.is_unit note.Note.typ) ds)
| S.NotE e -> (notE (exp e)).it
| S.AndE (e1, e2) -> (andE (exp e1) (exp e2)).it
| S.OrE (e1, e2) -> (orE (exp e1) (exp e2)).it
| S.ImpliesE (e1, e2) -> (impliesE (exp e1) (exp e2)).it
| S.OldE e -> (oldE (exp e)).it
| S.IfE (e1, e2, e3) -> I.IfE (exp e1, exp e2, exp e3)
| S.SwitchE (e1, cs) -> I.SwitchE (exp e1, cases cs)
| S.TryE (e1, cs, None) -> I.TryE (exp e1, cases cs, None)
| S.TryE (e1, cs, Some e2) ->
let thunk = [] -->* exp e2 |> named "$cleanup" in
assert T.(is_func thunk.note.Note.typ);
let th = fresh_var "thunk" thunk.note.Note.typ in
(blockE
[ letD th thunk ]
{ e1 with it = I.TryE (exp e1, cases cs, Some (id_of_var th, typ_of_var th)); note }).it
| S.WhileE (e1, e2) -> (whileE (exp e1) (exp e2)).it
| S.LoopE (e1, None) -> I.LoopE (exp e1)
| S.LoopE (e1, Some e2) -> (loopWhileE (exp e1) (exp e2)).it
| S.ForE (p, {it=S.CallE ({it=S.DotE (arr, proj); _}, _, e1); _}, e2)
when T.is_array arr.note.S.note_typ && (proj.it = "vals" || proj.it = "keys")
-> (transform_for_to_while p arr proj e1 e2).it
| S.ForE (p, e1, e2) -> (forE (pat p) (exp e1) (exp e2)).it
| S.DebugE e -> if !Mo_config.Flags.release_mode then (unitE ()).it else (exp e).it
| S.LabelE (l, t, e) -> I.LabelE (l.it, t.Source.note, exp e)
| S.BreakE (l, e) -> (breakE l.it (exp e)).it
| S.RetE e -> (retE (exp e)).it
| S.ThrowE e -> I.PrimE (I.ThrowPrim, [exp e])
| S.AsyncE (s, tb, e) ->
I.AsyncE (s, typ_bind tb, exp e,
match note.Note.typ with
| T.Async (_, t, _) -> t
| _ -> assert false)
| S.AwaitE (s, e) -> I.PrimE (I.AwaitPrim s, [exp e])
| S.AssertE (Runtime, e) -> I.PrimE (I.AssertPrim, [exp e])
| S.AssertE (_, e) -> (unitE ()).it
| S.AnnotE (e, _) -> assert false
| S.ImportE (f, ir) -> raise (Invalid_argument (Printf.sprintf "Import expression found in unit body: %s" f))
| S.PrimE s -> raise (Invalid_argument ("Unapplied prim " ^ s))
| S.IgnoreE e ->
I.BlockE ([
{ it = I.LetD ({it = I.WildP; at = e.at; note = T.Any}, exp e);
at = e.at; note = ()}], (unitE ()))
and url e at =
(* Set position explicitly *)
match e.it with
| S.AnnotE (e,_) -> url e at
| _ ->
let e' = exp e in
{ it = I.(PrimE (BlobOfIcUrl, [e'])); at; note = Note.{def with typ = T.blob; eff = e'.note.eff } }
and lexp e =
(* We short-cut AnnotE here, so that we get the position of the inner expression *)
match e.it with
| S.AnnotE (e,_) -> lexp e
| _ -> { e with it = lexp' e.it; note = e.note.S.note_typ }
and lexp' = function
| S.VarE i -> I.VarLE i.it
| S.DotE (e, x) -> I.DotLE (exp e, x.it)
| S.IdxE (e1, e2) -> I.IdxLE (exp e1, exp e2)
| _ -> raise (Invalid_argument ("Unexpected expression as lvalue"))
and transform_for_to_while p arr_exp proj e1 e2 =
(* for (p in (arr_exp : [_]).proj(e1)) e2 when proj in {"keys", "vals"}
~~>
let arr = arr_exp ;
let last = arr.size(e1) : Int - 1 ;
var indx = 0;
if (last == -1) { }
else {
label l loop {
let p = arr[indx]; /* sans bound check */
e2;
if (indx == last)
else { break l }
then { indx += 1 }
}
}
*)
let arr_typ = arr_exp.note.note_typ in
let arrv = fresh_var "arr" arr_typ in
let indx = fresh_var "indx" T.(Mut nat) in
let indexing_exp = match proj.it with
| "vals" -> primE I.DerefArrayOffset [varE arrv; varE indx]
| "keys" -> varE indx
| _ -> assert false in
let last = fresh_var "last" T.int in
let lab = fresh_id "done" () in
blockE
[ letD arrv (exp arr_exp)
; expD (exp e1)
; letD last (primE I.GetLastArrayOffset [varE arrv]) (* -1 for empty array *)
; varD indx (natE Numerics.Nat.zero)]
(ifE (primE I.EqArrayOffset [varE last; intE (Numerics.Int.of_int (-1))])
(* empty array, do nothing *)
(unitE())
(labelE lab T.unit (
loopE (
(blockE
[ letP (pat p) indexing_exp
; expD (exp e2)]
(ifE (primE I.EqArrayOffset [varE indx; varE last])
(* last, exit loop *)
(breakE lab (tupE []))
(* else increment and continue *)
(assignE indx (primE I.NextArrayOffset [varE indx]))))))))
and mut m = match m.it with
| S.Const -> Ir.Const
| S.Var -> Ir.Var
and obj_block at s self_id dfs obj_typ =
match s.it with
| T.Object | T.Module ->
build_obj at s.it self_id dfs obj_typ
| T.Actor ->
build_actor at [] self_id dfs obj_typ
| T.Memory -> assert false
and build_field {T.lab; T.typ;_} =
{ it = I.{ name = lab
; var = lab
}
; at = no_region
; note = typ
}
and build_fields obj_typ =
match obj_typ with
| T.Obj (_, fields) ->
(* TBR: do we need to sort val_fields?*)
let val_fields = List.filter (fun {T.lab; T.typ; _} -> not (T.is_typ typ)) fields in
List.map build_field val_fields
| _ -> assert false
and with_self i typ decs =
let_no_shadow (var i typ) (selfRefE typ) decs
and call_system_func_opt name es obj_typ =
List.find_map (fun es ->
match es.it with
| { S.vis = { it = S.System; _ };
S.dec = { it = S.LetD( { it = S.VarP id; note; _ }, _, _); at; _ };
_ }
when id.it = name ->
Some (
match name with
| "timer" when not !Mo_config.Flags.global_timer -> assert false;
| "timer" ->
let timer =
blockE
[ expD T.(callE (varE (var id.it note)) [Any]
(varE (var "@set_global_timer" (Func (Local, Returns, [], [Prim Nat64], []))))) ]
(unitE ()) in
{ timer with at }
| "heartbeat" ->
blockE
[ expD (callE (varE (var id.it note)) [T.Any] (unitE())) ]
(unitE ())
| "inspect" ->
let _, tfs = T.as_obj obj_typ in
let caller = fresh_var "caller" T.caller in
let arg = fresh_var "arg" T.blob in
let msg_typ = T.decode_msg_typ tfs in
let msg = fresh_var "msg" msg_typ in
let record_typ =
T.Obj (T.Object, List.sort T.compare_field
[{T.lab = "caller"; T.typ = typ_of_var caller; T.src = T.empty_src};
{T.lab = "arg"; T.typ = typ_of_var arg; T.src = T.empty_src};
{T.lab = "msg"; T.typ = typ_of_var msg; T.src = T.empty_src}])
in
let record = fresh_var "record" record_typ in
let msg_variant =
switch_textE (primE Ir.ICMethodNamePrim [])
(List.map (fun tf ->
(tf.T.lab,
match tf.T.typ with
| T.Func(T.Local, _, [], [], ts) ->
tagE tf.T.lab
T.(funcE ("$"^tf.lab) Local Returns [] [] ts
(primE (Ir.DeserializePrim ts) [varE arg]))
| _ -> assert false))
(T.as_variant msg_typ))
(* Trap early, refusing all other messages,
including those in T.well_known_actor_fields. *)
(wildP,
(primE (Ir.OtherPrim "trap")
[textE "canister_inspect_message implicitly refused message"]))
msg_typ
in
let accept = fresh_var "accept" T.bool
in
blockE
[ letD record (
blockE [
letD caller (primE Ir.ICCallerPrim []);
letD arg (primE Ir.ICArgDataPrim []);
letD msg msg_variant
]
(newObjE T.Object [
{it = I.{name = "caller"; var = id_of_var caller}; at = no_region; note = typ_of_var caller };
{it = I.{name = "arg"; var = id_of_var arg}; at = no_region; note = typ_of_var arg };
{it = I.{name = "msg"; var = id_of_var msg}; at = no_region; note = typ_of_var msg }]
record_typ));
letD accept (callE (varE (var id.it note)) [] (varE record))]
(ifE (varE accept)
(unitE ())
(primE (Ir.OtherPrim "trap")
[textE "canister_inspect_message explicitly refused message"]))
| name ->
let inst = match name with
| "preupgrade" | "postupgrade" -> [T.scope_bound]
| _ -> [] in
callE (varE (var id.it note)) inst (tupE []))
| _ -> None) es
and build_candid ts obj_typ =
let open Idllib in
let (args, prog) = Mo_idl.Mo_to_idl.of_service_type ts obj_typ in
let module WithComments = Arrange_idl.Make(struct let trivia = Some prog.note.Syntax.trivia end) in
I.{
args = WithComments.string_of_args args;
service = WithComments.string_of_prog prog;
}
and export_footprint self_id expr =
let open T in
let {lab;typ;_} = motoko_stable_var_info_fld in
let v = "$"^lab in
let size = fresh_var "size" T.nat64 in
let scope_con1 = Cons.fresh "T1" (Abs ([], scope_bound)) in
let scope_con2 = Cons.fresh "T2" (Abs ([], Any)) in
let bind1 = typ_arg scope_con1 Scope scope_bound in
let bind2 = typ_arg scope_con2 Scope scope_bound in
let ret_typ = T.Obj(Object,[{lab = "size"; typ = T.nat64; src = empty_src}]) in
let caller = fresh_var "caller" caller in
([ letD (var v typ) (
funcE v (Shared Query) Promises [bind1] [] [ret_typ] (
(asyncE T.Fut bind2
(blockE [
letD caller (primE I.ICCallerPrim []);
expD (assertE (orE (primE (I.RelPrim (principal, Operator.EqOp))
[varE caller; selfRefE principal])
(primE (I.OtherPrim "is_controller") [varE caller])));
letD size (primE (I.ICStableSize expr.note.Note.typ) [expr])
]
(newObjE T.Object
[{ it = Ir.{name = "size"; var = id_of_var size};
at = no_region;
note = T.nat64 }]
ret_typ))
(Con (scope_con1, []))))
)],
[{ it = I.{ name = lab; var = v }; at = no_region; note = typ }])
and export_runtime_information self_id =
let open T in
let {lab;typ;_} = motoko_runtime_information_fld in
let v = "$"^lab in
let scope_con1 = Cons.fresh "T1" (Abs ([], scope_bound)) in
let scope_con2 = Cons.fresh "T2" (Abs ([], Any)) in
let bind1 = typ_arg scope_con1 Scope scope_bound in
let bind2 = typ_arg scope_con2 Scope scope_bound in
let gc_strategy =
let open Mo_config in
let strategy = match !Flags.gc_strategy with
| Flags.Default -> "default"
| Flags.MarkCompact -> "compacting"
| Flags.Copying -> "copying"
| Flags.Generational -> "generational"
| Flags.Incremental -> "incremental" in
if !Flags.force_gc then (Printf.sprintf "%s force" strategy) else strategy
in
let prim_call function_name = primE (I.OtherPrim function_name) [] in
let information = [
("compilerVersion", textE (Lib.Option.get Source_id.release Source_id.id), T.text);
("garbageCollector", textE gc_strategy, T.text);
("rtsVersion", prim_call "rts_version", T.text);
("sanityChecks", boolE !Mo_config.Flags.sanity, T.bool);
("memorySize", prim_call "rts_memory_size", T.nat);
("heapSize", prim_call "rts_heap_size", T.nat);
("totalAllocation", prim_call "rts_total_allocation", T.nat);
("reclaimed", prim_call "rts_reclaimed", T.nat);
("maxLiveSize", prim_call "rts_max_live_size", T.nat);
("stableMemorySize", prim_call "rts_stable_memory_size", T.nat);
("logicalStableMemorySize", prim_call "rts_logical_stable_memory_size", T.nat);
("maxStackSize", prim_call "rts_max_stack_size", T.nat);
("callbackTableCount", prim_call "rts_callback_table_count", T.nat);
("callbackTableSize", prim_call "rts_callback_table_size", T.nat)
] in
let fields = List.map (fun (name, _, typ) -> fresh_var name typ) information in
(* Use an object return type to allow adding more data in future. *)
let ret_typ = motoko_runtime_information_type in
let caller = fresh_var "caller" caller in
([ letD (var v typ) (
funcE v (Shared Query) Promises [bind1] [] [ret_typ] (
(asyncE T.Fut bind2
(blockE ([
letD caller (primE I.ICCallerPrim []);
expD (ifE (orE
(primE (I.RelPrim (principal, Operator.EqOp)) [varE caller; selfRefE principal])
(primE (I.OtherPrim "is_controller") [varE caller]))
(unitE())
(primE (Ir.OtherPrim "trap")
[textE "Unauthorized call of __motoko_runtime_information"]))
] @
(List.map2 (fun field (_, load_info, _) ->
letD field load_info
) fields information))
(newObjE T.Object
(List.map2 (fun field (name, _, typ) ->
{ it = Ir.{name; var = id_of_var field}; at = no_region; note = typ })
fields information
) ret_typ))
(Con (scope_con1, []))))
)],
[{ it = I.{ name = lab; var = v }; at = no_region; note = typ }])
and build_actor at ts self_id es obj_typ =
let candid = build_candid ts obj_typ in
let fs = build_fields obj_typ in
let es = List.filter (fun ef -> is_not_typD ef.it.S.dec) es in
let ds = decs (List.map (fun ef -> ef.it.S.dec) es) in
let stabs = List.map (fun ef -> ef.it.S.stab) es in
let pairs = List.map2 stabilize stabs ds in
let idss = List.map fst pairs in
let ids = List.concat idss in
let sig_ = List.sort T.compare_field
(List.map (fun (i,t) -> T.{lab = i; typ = t; src = empty_src}) ids)
in
let fields = List.map (fun (i,t) -> T.{lab = i; typ = T.Opt (T.as_immut t); src = T.empty_src}) ids in
let mk_ds = List.map snd pairs in
let ty = T.Obj (T.Memory, List.sort T.compare_field fields) in
let state = fresh_var "state" (T.Mut (T.Opt ty)) in
let get_state = fresh_var "getState" (T.Func(T.Local, T.Returns, [], [], [ty])) in
let ds = List.map (fun mk_d -> mk_d get_state) mk_ds in
let ds =
varD state (optE (primE (I.ICStableRead ty) []))
::
nary_funcD get_state []
(let v = fresh_var "v" ty in
switch_optE (immuteE (varE state))
(unreachableE ())
(varP v) (varE v)
ty)
::
ds
@
[expD (assignE state (nullE()))]
in
let ds' = match self_id with
| Some n ->
with_self n.it obj_typ ds
| None -> ds in
let meta =
I.{ candid = candid;
sig_ = T.string_of_stab_sig sig_} in
let with_stable_vars wrap =
let vs = fresh_vars "v" (List.map (fun f -> f.T.typ) fields) in
blockE
((match call_system_func_opt "preupgrade" es obj_typ with
| Some call -> [ expD call]
| None -> []) @
[letP (seqP (List.map varP vs)) (* dereference any mutable vars, option 'em all *)
(seqE (List.map (fun (i,t) -> optE (varE (var i t))) ids))])
(wrap
(newObjE T.Memory
(List.map2 (fun f v ->
{ it = I.{name = f.T.lab; var = id_of_var v};
at = no_region;
note = f.T.typ }
) fields vs)
ty)) in
let footprint_d, footprint_f = export_footprint self_id (with_stable_vars Fun.id) in
let runtime_info_d, runtime_info_f = export_runtime_information self_id in
I.(ActorE (footprint_d @ runtime_info_d @ ds', footprint_f @ runtime_info_f @ fs,
{ meta;
preupgrade = (primE (I.ICStableWrite ty) []);
postupgrade =
(match call_system_func_opt "postupgrade" es obj_typ with
| Some call -> call
| None -> tupE []);
heartbeat =
(match call_system_func_opt "heartbeat" es obj_typ with
| Some call -> call
| None -> tupE []);
timer =
(match call_system_func_opt "timer" es obj_typ with
| Some call -> call
| None when !Mo_config.Flags.global_timer ->
blockE
[ expD T.(callE (varE (var "@timer_helper" Mo_frontend.Typing.heartbeat_type)) [unit] (unitE())) ]
(unitE ())
| None -> tupE []);
inspect =
(match call_system_func_opt "inspect" es obj_typ with
| Some call -> call
| None -> tupE []);
stable_record = with_stable_vars (fun e -> e);
stable_type = ty;
},
obj_typ))
and stabilize stab_opt d =
let s = match stab_opt with None -> S.Flexible | Some s -> s.it in
match s, d.it with
| (S.Flexible, _) ->
([], fun _ -> d)
| (S.Stable, I.VarD(i, t, e)) ->
([(i, T.Mut t)],
fun get_state ->
let v = fresh_var i t in
varD (var i (T.Mut t))
(switch_optE (dotE (callE (varE get_state) [] (unitE ())) i (T.Opt t))
e
(varP v) (varE v)
t))
| (S.Stable, I.RefD _) -> assert false (* RefD cannot come from user code *)
| (S.Stable, I.LetD({it = I.VarP i; _} as p, e)) ->
let t = p.note in
([(i, t)],
fun get_state ->
let v = fresh_var i t in
letP p
(switch_optE (dotE (callE (varE get_state) [] (unitE ())) i (T.Opt t))
e
(varP v) (varE v)
t))
| (S.Stable, I.LetD _) ->
assert false
and build_obj at s self_id dfs obj_typ =
let fs = build_fields obj_typ in
let obj_e = newObjE s fs obj_typ in
let ds = decs (List.map (fun df -> df.it.S.dec) dfs) in
let e = blockE ds obj_e in
match self_id with
| None -> e.it
| Some self_id ->
let self = var self_id.it obj_typ in
(letE self e (varE self)).it
and exp_field obj_typ ef =
let _, fts = T.as_obj_sub [] obj_typ in
let S.{mut; id; exp = e} = ef.it in
match mut.it with
| S.Var ->
let typ = match T.lookup_val_field_opt id.it fts with
| Some typ -> typ
| None -> T.Mut e.note.S.note_typ
in
assert (T.is_mut typ);
let id' = fresh_var id.it typ in
let d = varD id' (exp e) in
let f = { it = I.{ name = id.it; var = id_of_var id' }; at = no_region; note = typ } in
([d], f)
| S.Const ->
let typ = match T.lookup_val_field_opt id.it fts with
| Some typ -> typ
| None -> e.note.S.note_typ
in
assert (not (T.is_mut typ));
let e = exp e in
let id', ds = match e.it with
| I.(VarE (Const, v)) -> var v typ, []
| _ -> let id' = fresh_var id.it typ in id', [letD id' e] in
let f = { it = I.{ name = id.it; var = id_of_var id' }; at = no_region; note = typ } in
(ds, f)
and obj obj_typ efs bases =
let open List in
let base_info base =
let base_exp, base_t = exp base, (typ_note base.note).Note.typ in
let base_var = fresh_var "base" base_t in
let base_dec = letD base_var base_exp in
let pick l =
if exists (fun { T.lab; _ } -> lab = l) T.(promote base_t |> as_obj |> snd)
then [base_var] else [] in
base_dec, pick in
let base_decs, pickers = map base_info bases |> split in
let gap T.{ lab; typ; _ } = match typ with
| T.Typ _ -> []
| _ ->
if exists (fun (ef : S.exp_field) -> ef.it.id.it = lab) efs then []
else
let id = fresh_var lab typ in
let [@warning "-8"] [base_var] = concat_map ((|>) lab) pickers in
let d =
if T.is_mut typ then
refD id { it = I.DotLE(varE base_var, lab); note = typ; at = no_region }
else
letD id (dotE (varE base_var) lab typ) in
let f = { it = I.{ name = lab; var = id_of_var id }; at = no_region; note = typ } in
[d, f] in
let dss, fs = map (exp_field obj_typ) efs |> split in
let ds', fs' = concat_map gap (T.as_obj obj_typ |> snd) |> split in
let obj_e = newObjE T.Object (append fs fs') obj_typ in
let decs = append base_decs (append (flatten dss) ds') in
(blockE decs obj_e).it
and typ_binds tbs = List.map typ_bind tbs
and typ_bind tb =
let c = match tb.note with
| Some c -> c
| _ -> assert false
in
{ it = { Ir.con = c; Ir.sort = tb.it.S.sort.it; Ir.bound = tb.it.S.bound.note}
; at = tb.at
; note = ()
}
and array_dotE array_ty proj e =
let fun_ty bs t1 t2 = T.Func (T.Local, T.Returns, bs, t1, t2) in
let varA = T.Var ("A", 0) in
let element_ty = T.as_immut (T.as_array array_ty) in
let call name t1 t2 =
let poly_array_ty =
if T.is_mut (T.as_array array_ty)
then T.Array (T.Mut varA)
else T.Array varA in
let ty_param = {T.var = "A"; sort = T.Type; T.bound = T.Any} in
let f = var name (fun_ty [ty_param] [poly_array_ty] [fun_ty [] t1 t2]) in
callE (varE f) [element_ty] e in
match T.is_mut (T.as_array array_ty), proj with
| true, "size" -> call "@mut_array_size" [] [T.nat]
| false, "size" -> call "@immut_array_size" [] [T.nat]
| true, "get" -> call "@mut_array_get" [T.nat] [varA]
| false, "get" -> call "@immut_array_get" [T.nat] [varA]
| true, "put" -> call "@mut_array_put" [T.nat; varA] []
| true, "keys" -> call "@mut_array_keys" [] [T.iter_obj T.nat]
| false, "keys" -> call "@immut_array_keys" [] [T.iter_obj T.nat]
| true, "vals" -> call "@mut_array_vals" [] [T.iter_obj varA]
| false, "vals" -> call "@immut_array_vals" [] [T.iter_obj varA]
| _, _ -> assert false
and blob_dotE proj e =
let fun_ty t1 t2 = T.Func (T.Local, T.Returns, [], t1, t2) in
let call name t1 t2 =
let f = var name (fun_ty [T.blob] [fun_ty t1 t2]) in
callE (varE f) [] e in
match proj with
| "size" -> call "@blob_size" [] [T.nat]
| "vals" -> call "@blob_vals" [] [T.iter_obj T.(Prim Nat8)]
| _ -> assert false
and text_dotE proj e =
let fun_ty t1 t2 = T.Func (T.Local, T.Returns, [], t1, t2) in
let call name t1 t2 =
let f = var name (fun_ty [T.text] [fun_ty t1 t2]) in
callE (varE f) [] e in
match proj with
| "size" -> call "@text_size" [] [T.nat]
| "chars" -> call "@text_chars" [] [T.iter_obj T.char]
| _ -> assert false
and block force_unit ds =
match ds with
| [] -> ([], tupE [])
| [{it = S.ExpD ({it = S.BlockE ds; _}); _}] -> block force_unit ds
| _ ->
let prefix, last = Lib.List.split_last ds in
match force_unit, last.it with
| _, S.ExpD e ->
(decs prefix, exp e)
| false, S.LetD ({it = S.VarP x; _}, e, _) -> (* Fail block dead, pattern match irrefutable *)
(decs ds, varE (var x.it e.note.S.note_typ))
| false, S.LetD (p, e, None) ->
let x = fresh_var "x" (e.note.S.note_typ) in
(decs prefix @ [letD x (exp e); letP (pat p) (varE x)], varE x)
| false, S.LetD (p, e, Some f) ->
(decs prefix, let_else_switch (pat p) (exp e) (exp f))
| _, _ ->
(decs ds, tupE [])
and is_not_typD d = match d.it with | S.TypD _ -> false | _ -> true
and decs ds =
List.map dec (List.filter is_not_typD ds)
and dec d = { (phrase' dec' d) with note = () }
and dec' at n = function
| S.ExpD e -> (expD (exp e)).it
| S.LetD (p, e, f) ->
let p' = pat p in
let e' = exp e in
(* HACK: remove this once backend supports recursive actors *)
begin match p'.it, e'.it, f with
| I.VarP i, I.ActorE (ds, fs, u, t), _ ->
I.LetD (p', {e' with it = I.ActorE (with_self i t ds, fs, u, t)})
| _, _, None -> I.LetD (p', e')
| _, _, Some f -> I.LetD (p', let_else_switch (pat p) (exp e) (exp f))
end
| S.VarD (i, e) -> I.VarD (i.it, e.note.S.note_typ, exp e)
| S.TypD _ -> assert false
| S.ClassD (sp, id, tbs, p, _t_opt, s, self_id, dfs) ->
let id' = {id with note = ()} in
let sort, _, _, _, _ = Type.as_func n.S.note_typ in
let op = match sp.it with
| T.Local -> None
| T.Shared (_, p) -> Some p in
let inst = List.map
(fun tb ->
match tb.note with
| None -> assert false
| Some c -> T.Con (c, []))
tbs in
let fun_typ = n.S.note_typ in
let rng_typ =
match fun_typ with
| T.Func(_, _, bds, dom, [rng]) ->
assert(List.length inst = List.length bds);
T.promote (T.open_ inst rng)
| _ -> assert false
in
let varPat = {it = I.VarP id'.it; at = at; note = fun_typ } in
let args, wrap, control, _n_res = to_args n.S.note_typ op p in
let body = if s.it = T.Actor
then
let (_, _, obj_typ) = T.as_async rng_typ in
let c = Cons.fresh T.default_scope_var (T.Abs ([], T.scope_bound)) in
asyncE T.Fut (typ_arg c T.Scope T.scope_bound) (* TBR *)
(wrap { it = obj_block at s (Some self_id) dfs (T.promote obj_typ);
at = at;
note = Note.{def with typ = obj_typ } })
(List.hd inst)
else
wrap
{ it = obj_block at s (Some self_id) dfs rng_typ;
at = at;
note = Note.{ def with typ = rng_typ } }
in
let fn = {
it = I.FuncE (id.it, sort, control, typ_binds tbs, args, [rng_typ], body);
at = at;
note = Note.{ def with typ = fun_typ }
} in
I.LetD (varPat, fn)
and cases cs = List.map (case Fun.id) cs
and case f c = phrase (case' f) c
and case' f c = S.{ I.pat = pat c.pat; I.exp = f (exp c.exp) }
and pats ps = List.map pat ps
and pat p = phrase pat' p
and pat' = function
| S.VarP v -> I.VarP v.it
| S.WildP -> I.WildP
| S.LitP l -> I.LitP (lit !l)
| S.SignP (o, l) -> I.LitP (lit (apply_sign o (!l)))
| S.TupP ps -> I.TupP (pats ps)
| S.ObjP pfs ->
I.ObjP (pat_fields pfs)
| S.OptP p -> I.OptP (pat p)
| S.TagP (i, p) -> I.TagP (i.it, pat p)
| S.AltP (p1, p2) -> I.AltP (pat p1, pat p2)
| S.AnnotP (p, _)
| S.ParP p -> pat' p.it
and lit = function
| S.NullLit -> I.NullLit
| S.BoolLit x -> I.BoolLit x
| S.NatLit x -> I.NatLit x
| S.Nat8Lit x -> I.Nat8Lit x
| S.Nat16Lit x -> I.Nat16Lit x
| S.Nat32Lit x -> I.Nat32Lit x
| S.Nat64Lit x -> I.Nat64Lit x
| S.IntLit x -> I.IntLit x
| S.Int8Lit x -> I.Int8Lit x
| S.Int16Lit x -> I.Int16Lit x
| S.Int32Lit x -> I.Int32Lit x
| S.Int64Lit x -> I.Int64Lit x
| S.FloatLit x -> I.FloatLit x
| S.CharLit x -> I.CharLit x
| S.TextLit x -> I.TextLit x
| S.BlobLit x -> I.BlobLit x
| S.PreLit _ -> assert false
and pat_fields pfs = List.map pat_field pfs
and pat_field pf = phrase (fun S.{id; pat=p} -> I.{name=id.it; pat=pat p}) pf
and to_args typ po p : Ir.arg list * (Ir.exp -> Ir.exp) * T.control * T.typ list =
let mergeE ds e =
match e.it with
| Ir.ActorE _ ->
(match Rename.exp' Rename.Renaming.empty e.it with
| Ir.ActorE (ds', fs, up, ot) ->
{ e with it = Ir.ActorE (ds @ ds', fs, up, ot) }
| _ -> assert false)
| _ -> blockE ds e
in
let sort, control, n_args, res_tys =
match typ with
| Type.Func (sort, control, tbds, dom, res) ->
sort, control, List.length dom, res
| Type.Non ->
Type.Local, Type.Returns, 1, []
| _ -> raise (Invalid_argument ("to_args " ^ Type.string_of_typ typ))
in
let tys = if n_args = 1 then [p.note] else T.seq_of_tup p.note in
let rec pat_unannot p = match p.it with
| S.AnnotP (p, _) -> pat_unannot p
| S.ParP p -> pat_unannot p
| _ -> p
in
(* In source, the context pattern is outside the argument pattern,
but in the IR, parameters are bound first. So if there is a context pattern,
we _must_ create fresh names for the parameters and bind the actual parameters
inside the wrapper. *)
let must_wrap = po <> None in
let to_arg p : (Ir.arg * (Ir.exp -> Ir.exp)) =
match (pat_unannot p).it with
| S.AnnotP _ | S.ParP _ -> assert false
| S.VarP i when not must_wrap ->
{ i with note = p.note },
Fun.id
| S.WildP ->
let v = fresh_var "param" p.note in
arg_of_var v,
Fun.id
| _ ->
let v = fresh_var "param" p.note in
arg_of_var v,
(fun e -> mergeE [letP (pat p) (varE v)] e)
in
let args, wrap =
match n_args, (pat_unannot p).it with
| _, (S.AnnotP _ | S.ParP _) -> assert false
| _, S.WildP ->
let vs = fresh_vars "ignored" tys in
List.map arg_of_var vs,
Fun.id
| 1, _ ->
let a, wrap = to_arg p in
[a], wrap
| 0, S.TupP [] ->
[], Fun.id
| _, S.TupP ps ->
assert (List.length ps = n_args);
List.fold_right (fun p (args, wrap) ->
let (a, wrap1) = to_arg p in
(a::args, fun e -> wrap1 (wrap e))
) ps ([], Fun.id)
| _, _ ->
let vs = fresh_vars "param" tys in
List.map arg_of_var vs,
(fun e -> mergeE [letP (pat p) (tupE (List.map varE vs))] e)
in
let wrap_po e =
match po with
| None -> wrap e
| Some p ->
let v = fresh_var "caller" T.caller in
mergeE
[letD v (primE I.ICCallerPrim []);
letP (pat p)
(newObjE T.Object
[{ it = Ir.{name = "caller"; var = id_of_var v};
at = no_region;
note = T.caller }]
T.ctxt)]
(wrap e)
in
let wrap_under_async e =
if T.is_shared_sort sort
then match control, e.it with
| (T.Promises, Ir.AsyncE (s, tb, e', t)) ->
{ e with it = Ir.AsyncE (s, tb, wrap_po e', t) }
| T.Returns, Ir.BlockE (
[{ it = Ir.LetD ({ it = Ir.WildP; _} as pat, ({ it = Ir.AsyncE (T.Fut, tb,e',t); _} as exp)); _ }],
({ it = Ir.PrimE (Ir.TupPrim, []); _} as unit)) ->
blockE [letP pat {exp with it = Ir.AsyncE (T.Fut, tb,wrap_po e',t)} ] unit
| _, Ir.ActorE _ -> wrap_po e
| _ -> assert false
else
wrap_po e
in
args, wrap_under_async, control, res_tys
type import_declaration = Ir.dec list
let actor_class_mod_exp id class_typ default system =
let class_con = Cons.fresh id (T.Def([], class_typ)) in
(objE T.Module
[(id, class_con)]
[(id, default);
("system", objE T.Module [] [(id, system)])])
let import_compiled_class (lib : S.comp_unit) wasm : import_declaration =
let f = lib.note.filename in
let { body; _ } = lib.it in
let id = match body.it with
| S.ActorClassU (_, id, _, _, _, _, _) -> id.it
| _ -> assert false
in
let fun_typ = T.normalize body.note.S.note_typ in
let s, cntrl, tbs, ts1, ts2 = T.as_func fun_typ in
let cs = T.open_binds tbs in
let c, _ = T.as_con (List.hd cs) in
let ts1' = List.map (T.open_ cs) ts1 in
let ts2' = List.map (T.open_ cs) ts2 in
let class_typ = match List.map T.normalize ts2' with
| [T.Async (_, _, class_typ)] -> class_typ
| _ -> assert false
in
let t_async = T.codom cntrl (fun () -> assert false) ts2' in
let _, _, t_actor = T.as_async (T.normalize t_async) in
let cs' = T.open_binds tbs in
let c', _ = T.as_con (List.hd cs') in
let install_actor_helper = var "@install_actor_helper"
T.(Func (Local, Returns, [scope_bind],
[install_arg_typ; bool; blob; blob],
[Async(Cmp, Var (default_scope_var, 0), principal)]))
in
let wasm_blob = fresh_var "wasm_blob" T.blob in
let install_arg =
fresh_var "install_arg" T.install_arg_typ in
let system_body install_arg =
let vs = fresh_vars "param" ts1' in
let principal = fresh_var "principal" T.principal in
funcE id T.Local T.Returns
[typ_arg c T.Scope T.scope_bound]
(List.map arg_of_var vs)
ts2'
(asyncE T.Fut
(typ_arg c' T.Scope T.scope_bound)
(letE principal
(awaitE T.Cmp
(callE (varE install_actor_helper) cs'
(tupE [
install_arg;
boolE ((!Mo_config.Flags.enhanced_orthogonal_persistence));
varE wasm_blob;
primE (Ir.SerializePrim ts1') [seqE (List.map varE vs)]])))
(primE (Ir.CastPrim (T.principal, t_actor)) [varE principal]))
(List.hd cs))
in
let system = install_arg --> (system_body (varE install_arg)) in
let default =
system_body (tagE "new" (recordE ["settings", nullE()]))
in
let mod_exp = actor_class_mod_exp id class_typ default system in
let mod_typ = mod_exp.note.Note.typ in
[ letD wasm_blob (blobE wasm);
letD (var (id_of_full_path f) mod_typ) mod_exp ]
let import_prelude prelude : import_declaration =
decs prelude.it
let inject_decs extra_ds u =
let open Ir in
match u with
| LibU (ds, exp) -> LibU (extra_ds @ ds, exp)
| ProgU ds -> ProgU (extra_ds @ ds)
| ActorU (None, ds, fs, up, t) ->
Ir.ActorU (None, extra_ds @ ds, fs, up, t)
| ActorU (Some _, _, _, _, _) ->
let u'= Rename.comp_unit Rename.Renaming.empty u in
match u' with
| ActorU (as_opt, ds, fs, up, t) ->
Ir.ActorU (as_opt, extra_ds @ ds, fs, up, t)
| _ -> assert false
let link_declarations imports (cu, flavor) =
inject_decs imports cu, flavor
let transform_import (i : S.import) : import_declaration =
let (p, f, ir) = i.it in
let t = i.note in
assert (t <> T.Pre);
let rhs = match !ir with
| S.Unresolved -> raise (Invalid_argument ("Unresolved import " ^ f))
| S.LibPath {path = fp; _} ->
varE (var (id_of_full_path fp) t)
| S.PrimPath ->
varE (var (id_of_full_path "@prim") t)
| S.IDLPath (fp, canister_id) ->
primE (I.ActorOfIdBlob t) [blobE canister_id]
in [ letP (pat p) rhs ]
let transform_unit_body (u : S.comp_unit_body) : Ir.comp_unit =
match u.it with
| S.ProgU ds -> I.ProgU (decs ds)
| S.ModuleU (self_id, fields) -> (* compiling a module as a library *)
I.LibU ([], {
it = build_obj u.at T.Module self_id fields u.note.S.note_typ;
at = u.at; note = typ_note u.note})
| S.ActorClassU (sp, typ_id, _tbs, p, _, self_id, fields) ->
let fun_typ = u.note.S.note_typ in
let op = match sp.it with
| T.Local -> None
| T.Shared (_, p) -> Some p in
let args, wrap, control, _n_res = to_args fun_typ op p in
let (ts, obj_typ) =
match fun_typ with
| T.Func(_s, _c, bds, ts1, [async_rng]) ->
assert(1 = List.length bds);
let cs = T.open_binds bds in
let (_, _, rng) = T.as_async (T.normalize (T.open_ cs async_rng)) in
List.map (T.open_ cs) ts1,
T.promote rng
| _ -> assert false
in
let actor_expression = build_actor u.at ts (Some self_id) fields obj_typ in
let e = wrap {
it = actor_expression;
at = no_region;
note = Note.{ def with typ = obj_typ } }
in
begin match e.it with
| I.ActorE(ds, fs, u, t) ->
I.ActorU (Some args, ds, fs, u, t)
| _ -> assert false
end
| S.ActorU (self_id, fields) ->
let actor_expression = build_actor u.at [] self_id fields u.note.S.note_typ in
begin match actor_expression with
| I.ActorE (ds, fs, u, t) ->
I.ActorU (None, ds, fs, u, t)
| _ -> assert false
end
let transform_unit (u : S.comp_unit) : Ir.prog =
let { imports; body; _ } = u.it in
let imports' = List.concat_map transform_import imports in
let body' = transform_unit_body body in
inject_decs imports' body', Ir.full_flavor()
(* Import a unit by composing IR.
When used for IR interpretation only, this includes
any class that would have been separately handled by
import_compiled_class (above) for compilation.
*)
let import_unit (u : S.comp_unit) : import_declaration =
let { imports; body; _ } = u.it in
let f = u.note.filename in
let t = body.note.S.note_typ in
assert (t <> T.Pre);
let imports' = List.concat_map transform_import imports in
let body' = transform_unit_body body in
let prog = inject_decs imports' body' in
match prog with
| I.LibU (ds, e) ->
let exp = blockE ds e in
[ letD (var (id_of_full_path f) exp.note.Note.typ) exp ]
| I.ActorU (None, ds, fs, up, t) ->
raise (Invalid_argument "Desugar: Cannot import actor")
| I.ActorU (Some as_, ds, fs, up, actor_t) ->
let id = match body.it with
| S.ActorClassU (_, id, _, _, _, _, _) -> id.it
| _ -> assert false
in
let s, cntrl, tbs, ts1, ts2 = T.as_func t in
let cs = T.open_binds [T.scope_bind] in
let c, _ = T.as_con (List.hd cs) in
let cs' = T.open_binds [T.scope_bind] in
let c', _ = T.as_con (List.hd cs') in
let class_typ = match List.map T.normalize ts2 with
| [ T.Async(_, _, t2) ] -> t2
| _ -> assert false in
let install_arg =
fresh_var "install_arg" T.install_arg_typ
in
let system_body install_arg =
funcE id T.Local T.Returns
[typ_arg c T.Scope T.scope_bound]
as_
[T.Async (T.Fut, List.hd cs, actor_t)]
(asyncE
T.Fut
(typ_arg c' T.Scope T.scope_bound)
(ifE
(primE (Ir.RelPrim (T.install_arg_typ, Operator.EqOp))
[ install_arg;
tagE "new" (recordE ["settings", nullE()]) ])
{ it = I.ActorE (ds, fs, up, actor_t); at = u.at; note = Note.{ def with typ = actor_t } }
(primE (Ir.OtherPrim "trap")
[textE "actor class configuration not supported in interpreter"]))
(List.hd cs))
in
let system = install_arg --> (system_body (varE install_arg)) in
let system_var = fresh_var "system" system.note.Note.typ in
let default = (varE system_var) -*- (tagE "new" (recordE ["settings", nullE()])) in
let mod_exp = actor_class_mod_exp id class_typ default (varE system_var) in
let mod_typ = mod_exp.note.Note.typ in
[ letD system_var system;
letD (var (id_of_full_path f) mod_typ) mod_exp ]
| I.ProgU ds ->
raise (Invalid_argument "Desugar: Cannot import program")