1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
(*
The type for a dynamic library: A normal WebAssembly module
plus the dylink section.
*)
open Wasm_exts.Ast
open Wasm.Source
open Wasm_exts.CustomModule
module I64_convert = Wasm.I64_convert
(*
This module is a first stab that should be functionally working, but will go
through further refactoring before we are happy with it. Things to do:
* much code (finding imports, counting) is duplicated for globals and
functions. This could be refactored into general functions and predicates.
* There are multiple AST traversals. These could be turned into a single one
(taking multiple rename functions) or even more generally taking a record
of functions for each syntactic category.
*)
(*
Resolving GOT.func and GOT.mem imports
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
GOT.func and GOT.mem imports arise from function and data pointers,
respectively, in languages with pointers (e.g. C and Rust). The idea is that if
a shared library exposes a function/data pointer the entire process should use
the same pointer for the function/data so that the pointer arithmetic and
comparisons will work. For example, this C code:
__attribute__ ((visibility("default")))
int f0(int x, int y)
{
return x + y;
}
__attribute__ ((visibility("default")))
int (\*f1(void)) (int x, int y)
{
return &f0;
}
generates this GOT.func import:
(import "GOT.func" "f0" (global (;N;) (mut i32)))
The host is responsible of allocating a table index for this function and
resolving the import to the table index for `f0` so that this code in the
importing module would work:
assert(f1() == f0);
Note that the definition of `f1` is in the *imported* module and this assertion
is in the *importing* module.
Exposing a data pointer generates a GOT.mem import. This is to support
accesses to the data and pointer equality and pointer arithmetics.
All GOT.mem imports should resolve to the absolute pointer of their exported data.
The corresponding export of the GOT.mem denotes the pointer offset relative
to the memory base of the module.
(Pointer arithmetic on function pointers are undefined behavior in C and is not
supported by clang's wasm backend)
Normally this stuff is for dynamic linking, but we want to link the RTS
statically, so we resolve these imports during linking. We only support
GOT.func and GOT.mem imports in the module that defines the function that we
take the address of. This currently works as moc-generated code doesn't import
function addresses or data pointers from the RTS.
We resolve GOT imports in two steps:
- After loading the RTS module we collect GOT imports and determine their
implementation in the defining module (the RTS):
For each `GOT.func` import, we determine the corresponding function index,
e.g. `f0` in the example above.
For each `GOT.mem` import, we detemine the corresponding global storing the
data offset relative to the memory base of the library.
This is implemented in `collect_got_imports`.
- After merging the sections, we replace the GOT imports with globals in the
module section.
For each `GOT.func`, we create an element in the table with the function index
determined in the first step. The `GOT.func` import is replaced by a global
that refers to the new table element.
For each `GOT.mem`, we replace the GOT accesses in the AST by code that computes
the absolute address of the data. This is the library's memory base plus the
relative data offset stored in the global as determined in the first step.
The `GOT.mem` import is replaced by a dummy global that only serves to maintain
the numbering of the globals.
Note that we don't reuse table entries when a function is already in the
table, to avoid breakage when [ref-types] proposal is implemented, which will
allow mutating table entries.
[ref-types]: https://github.com/WebAssembly/reference-types
The GOT globals are moved to the beginning of the module's global. For simplicity,
we restrict the GOT globals to only occur at the end of the imported globals.
This is implemented in `replace_got_imports`.
See also the tests `test/ld/fun-ptr` for concrete examples of GOT resolutions.
*)
(* Linking *)
exception LinkError of string
exception TooLargeDataSegments of string
type imports = (int32 * name) list
let phrase f x = { x with it = f x.it }
let map_module f (em : extended_module) = { em with module_ = f em.module_ }
let map_name_section f (em : extended_module) = { em with name = f em.name }
(* Distinction between Memory64 and Memory32 *)
let uses_memory64 (m: module_') : bool =
let open Wasm_exts.Types in
let MemoryType(_, index_type) = match m.memories with
| [] -> raise (LinkError "Expect at least one memory in module")
| memory::_ -> memory.it.mtype
in
match index_type with
| I64IndexType -> true
| I32IndexType -> false
(* Generic functions about import and export lists *)
let get_import is_thing j m =
let open Int32 in
let rec go i = function
| [] -> assert false
| imp::is ->
if is_thing imp.it.idesc.it
then
if i = j
then imp
else go (add i 1l) is
else go i is
in go 0l m.imports
let find_imports is_thing libname m : imports =
let name = Lib.Utf8.decode libname in
let rec go i acc = function
| [] -> List.rev acc
| imp::is ->
if is_thing imp.it.idesc.it
then
if imp.it.module_name = name
then go (i + 1) ((Int32.of_int i, imp.it.item_name) :: acc) is
else go (i + 1) acc is
else go i acc is
in go 0 [] m.imports
let remove_imports is_thing resolved : module_' -> module_' = fun m ->
let rec go i = function
| [] -> []
| (imp::is) ->
if is_thing imp.it.idesc.it
then
if List.mem_assoc i resolved
then go (Int32.add i 1l) is
else imp :: go (Int32.add i 1l) is
else imp :: go i is
in
{ m with imports = go 0l m.imports }
let count_imports is_thing m =
Lib.List32.length (List.filter (fun i -> is_thing i.it.idesc.it) m.imports)
let remove_export is_thing name : module_' -> module_' = fun m ->
let to_remove e =
not (is_thing e.it.edesc.it <> None && e.it.name = Lib.Utf8.decode name)
in
{ m with exports = List.filter to_remove m.exports }
module NameMap = Map.Make(struct type t = Wasm.Ast.name let compare = compare end)
type exports = int32 NameMap.t
let find_exports is_thing m : exports =
List.fold_left (fun map exp ->
match is_thing exp.it.edesc.it with
| Some v -> NameMap.add exp.it.name v.it map
| _ -> map
) NameMap.empty m.exports
(* Predicate to specialize these generic functions to the various entities *)
let is_fun_import = function
| FuncImport _ -> true
| _ -> false
let is_global_import = function
| GlobalImport _ -> true
| _ -> false
let is_table_import = function
| TableImport _ -> true
| _ -> false
let is_memory_import = function
| MemoryImport _ -> true
| _ -> false
let is_fun_export = function
| FuncExport v -> Some v
| _ -> None
let is_global_export = function
| GlobalExport v -> Some v
| _ -> None
let get_fun_typ i m : Wasm_exts.Types.func_type =
let imports_n = count_imports is_fun_import m in
let tyvar =
if i < imports_n
then
match (get_import is_fun_import i m).it.idesc.it with
| FuncImport ty -> ty.it
| _ -> assert false
else
let f = Lib.List32.nth m.funcs (Int32.sub i imports_n) in
f.it.ftype.it
in
(Lib.List32.nth m.types tyvar).it
let get_global_typ i m : Wasm_exts.Types.global_type =
let imports_n = count_imports is_global_import m in
if i < imports_n
then
match (get_import is_global_import i m).it.idesc.it with
| GlobalImport ty -> ty
| _ -> assert false
else
let f = Lib.List32.nth m.globals (Int32.sub i imports_n) in
f.it.gtype
(* Utilities related to functions *)
let remove_fun_imports_name_section resolved : name_section -> name_section = fun ns ->
let keep (fi, x) = not (List.mem_assoc fi resolved) in
{ ns with
function_names = List.filter keep ns.function_names;
locals_names = List.filter keep ns.locals_names;
}
let prepend_to_start fi ftype (em : extended_module) =
let imports_n = count_imports is_fun_import em.module_ in
let wrap_fi = Int32.add imports_n (Lib.List32.length em.module_.funcs) in
let wrap_fun = {
ftype = ftype @@ no_region;
locals = [];
body =
[ Call (fi @@ no_region) @@ no_region ] @
(match em.module_.start with
| Some start_fi -> [ Call start_fi @@ no_region ]
| None -> [])
} @@ no_region in
{ em with
module_ =
{ em.module_ with
funcs = em.module_.funcs @ [ wrap_fun ];
start = Some (wrap_fi @@ no_region)
};
name =
{ em.name with
function_names = em.name.function_names @ [ wrap_fi, "link_start" ]
}
}
let _remove_non_canister_exports (em : extended_module) : extended_module =
let is_canister_export (exp : export) = Lib.String.chop_prefix "canister_" (Lib.Utf8.encode exp.it.name) <> None in
map_module (fun m -> { m with exports = List.filter is_canister_export m.exports }) em
let remove_non_ic_exports (em : extended_module) : extended_module =
(* We assume that every exported function that does not have an entry in the
custom types section was only exported for linking, and should not be
exported in the final module *)
let is_ic_export (exp : export) =
Lib.String.chop_prefix "canister_" (Lib.Utf8.encode exp.it.name) <> None ||
"_start" = Lib.Utf8.encode exp.it.name
in
let keep_export exp =
is_ic_export exp ||
match exp.it.edesc.it with
| FuncExport _
| GlobalExport _ -> false
| MemoryExport _
| TableExport _ -> true in
map_module (fun m -> { m with exports = List.filter keep_export m.exports }) em
(* Generic linking logic *)
type renumbering = int32 -> int32
let resolve imports exports : (int32 * int32) list =
List.flatten (List.map (fun (fi, name) ->
match NameMap.find_opt name exports with
| Some fi' -> [ (fi, fi') ]
| None -> []
) imports)
let calculate_renaming n_imports1 n_things1 n_imports2 resolved12 resolved21 : (renumbering * renumbering) =
let open Int32 in
let n_imports1' = sub n_imports1 (Lib.List32.length resolved12) in
let n_imports2' = sub n_imports2 (Lib.List32.length resolved21) in
let rec fun1 i =
let rec go skipped = function
| (imp, exp)::is ->
if i < imp then sub i skipped
else if i = imp then fun2 exp
else go (add skipped 1l) is
| [] ->
if i < n_imports1
then sub i skipped
else sub (add i n_imports2') skipped
in go 0l resolved12
and fun2 i =
let rec go skipped = function
| (imp, exp)::is ->
if i < imp then sub (add i n_imports1') skipped
else if i = imp then fun1 exp
else go (add skipped 1l) is
| [] ->
if i < n_imports2
then sub (add i n_imports1') skipped
else sub (add (add i n_imports1') n_things1) skipped
in go 0l resolved21
in
(fun1, fun2)
(* AST traversals *)
let rename_funcs rn : module_' -> module_' = fun m ->
let var' = rn in
let var = phrase var' in
let rec instr' = function
| Call v -> Call (var v)
| Block (ty, is) -> Block (ty, instrs is)
| Loop (ty, is) -> Loop (ty, instrs is)
| If (ty, is1, is2) -> If (ty, instrs is1, instrs is2)
| i -> i
and instr i = phrase instr' i
and instrs is = List.map instr is in
let func' f = { f with body = instrs f.body } in
let func = phrase func' in
let funcs = List.map func in
let edesc' = function
| FuncExport v -> FuncExport (var v)
| e -> e in
let edesc = phrase edesc' in
let export' e = { e with edesc = edesc e.edesc } in
let export = phrase export' in
let exports = List.map export in
let segment' f s = { s with init = f s.init } in
let segment f = phrase (segment' f) in
{ m with
funcs = funcs m.funcs;
exports = exports m.exports;
start = Option.map var m.start;
elems = List.map (segment (List.map var)) m.elems;
}
let rename_globals rn : module_' -> module_' = fun m ->
let var' = rn in
let var = phrase var' in
let rec instr' = function
| Block (ty, is) -> Block (ty, instrs is)
| Loop (ty, is) -> Loop (ty, instrs is)
| If (ty, is1, is2) -> If (ty, instrs is1, instrs is2)
| GlobalGet v -> GlobalGet (var v)
| GlobalSet v -> GlobalSet (var v)
| i -> i
and instr i = phrase instr' i
and instrs is = List.map instr is in
let func' f = { f with body = instrs f.body } in
let func = phrase func' in
let funcs = List.map func in
let const = phrase instrs in
let global' g = { g with value = const g.value } in
let global = phrase global' in
let globals = List.map global in
let table_segment' (s : var list segment') = { s with offset = const s.offset; } in
let table_segment = phrase (table_segment') in
let table_segments = List.map table_segment in
let segment_mode' (dmode : segment_mode') =
match dmode with
| Passive -> Passive
| Active { index; offset } -> Active { index; offset = const offset }
| Declarative -> Declarative
in
let segment_mode = phrase (segment_mode') in
let data_segment' (s : data_segment') = { s with dmode = segment_mode s.dmode; } in
let data_segment = phrase (data_segment') in
let data_segments = List.map data_segment in
(* The exports are used to resolve `GOT.mem`.
Therefore, also update the exported global indices. *)
let export_desc' = function
| GlobalExport v -> GlobalExport (var v)
| other -> other
in
let export_desc = phrase (export_desc') in
let export' (e: export') = { e with edesc = export_desc e.edesc } in
let export = phrase export' in
let exports = List.map export in
{ m with
funcs = funcs m.funcs;
globals = globals m.globals;
elems = table_segments m.elems;
datas = data_segments m.datas;
exports = exports m.exports;
}
let set_global global value = fun m ->
let rec go i = function
| [] -> assert false
| g::gs when i = Int32.to_int global ->
let open Wasm_exts.Types in
let global_value = if uses_memory64 m then
(assert (g.it.gtype = GlobalType (I64Type, Immutable));
Wasm_exts.Values.I64 (Int64.of_int32 value))
else
(assert (g.it.gtype = GlobalType (I32Type, Immutable));
Wasm_exts.Values.I32 value)
in
let g = phrase (fun g' ->
{ g' with value = [Const (global_value @@ g.at) @@ g.at] @@ g.at }
) g in
g :: gs
| g::gs -> g :: go (i+1) gs
in
{ m with globals = go 0 m.globals }
let fill_global (global : int32) (value : Wasm_exts.Values.value) (uses_memory64 : bool) : module_' -> module_' = fun m ->
let rec instr' = function
| Block (ty, is) -> Block (ty, instrs is)
| Loop (ty, is) -> Loop (ty, instrs is)
| If (ty, is1, is2) -> If (ty, instrs is1, instrs is2)
| GlobalGet v when v.it = global -> Const (value @@ v.at)
| GlobalSet v when v.it = global -> assert false
| i -> i
and instr i = phrase instr' i
and instrs is = List.map instr is in
let func' f = { f with body = instrs f.body } in
let func = phrase func' in
let funcs = List.map func in
let const = phrase instrs in
(* For 64-bit, convert the constant expression of the table segment offset to 32-bit. *)
let const_instr_to_32' = function
| Const { it = (Wasm_exts.Values.I64 number); at } -> Const ((Wasm_exts.Values.I32 (Int64.to_int32 number)) @@ at)
| GlobalGet v -> GlobalGet v
| _ -> assert false
in
let const_instr_to_32 i = phrase const_instr_to_32' i in
let convert_const_to_32' = List.map const_instr_to_32 in
let convert_const_to_32 = phrase convert_const_to_32' in
let table_const offset =
let expr = const offset in
if uses_memory64 then convert_const_to_32 expr else expr
in
let global' g = { g with value = const g.value } in
let global = phrase global' in
let globals = List.map global in
let table_segment' (s : var list segment') = { s with offset = table_const s.offset; } in
let table_segment = phrase (table_segment') in
let table_segments = List.map table_segment in
let segment_mode' (dmode : segment_mode') =
match dmode with
| Passive -> Passive
| Active { index; offset } -> Active { index; offset = const offset }
| Declarative -> Declarative
in
let segment_mode = phrase (segment_mode') in
let data_segment' (s : data_segment') = { s with dmode = segment_mode s.dmode; } in
let data_segment = phrase (data_segment') in
let data_segments = List.map data_segment in
{ m with
funcs = funcs m.funcs;
globals = globals m.globals;
elems = table_segments m.elems;
datas = data_segments m.datas;
}
let rename_funcs_name_section rn (ns : name_section) =
{ ns with
function_names = List.map (fun (fi, name) -> (rn fi, name)) ns.function_names;
locals_names = List.map (fun (fi, locals) -> (rn fi, locals)) ns.locals_names;
}
let rename_funcs_extended rn (em : extended_module) =
{ em with
module_ = rename_funcs rn em.module_;
name = rename_funcs_name_section rn em.name;
}
let rename_globals_extended rn (em : extended_module) =
{ em with
module_ = rename_globals rn em.module_;
}
let rename_types rn m =
let ty_var = phrase rn in
let block_type = function
| VarBlockType tv -> VarBlockType (ty_var tv)
| ValBlockType vto -> ValBlockType vto in
let rec instr' = function
| CallIndirect (table_index, tv) -> CallIndirect (table_index, (ty_var tv))
| Block (bty, is) -> Block (block_type bty, instrs is)
| Loop (bty, is) -> Loop (block_type bty, instrs is)
| If (bty, is1, is2) -> If (block_type bty, instrs is1, instrs is2)
| i -> i
and instr i = phrase instr' i
and instrs is = List.map instr is in
let func' f = { f with ftype = ty_var f.ftype; body = instrs f.body } in
let func = phrase func' in
let funcs = List.map func in
let idesc' = function
| FuncImport tv -> FuncImport (ty_var tv)
| id -> id in
let idesc = phrase idesc' in
let import' i = { i with idesc = idesc i.idesc } in
let import = phrase import' in
let imports = List.map import in
{ m with
funcs = funcs m.funcs;
imports = imports m.imports;
}
(* Setting and getting top-level module data *)
let read_global gi (m : module_') : int32 =
let n_impo = count_imports is_global_import m in
let g = List.nth m.globals (Int32.(to_int (sub gi n_impo))) in
let open Wasm_exts.Types in
match uses_memory64 m, g.it.value.it with
| true, [{ it = Const {it = Wasm_exts.Values.I64 i;_}; _}] ->
assert (g.it.gtype = GlobalType (I64Type, Immutable));
Int64.to_int32 i
| false, [{ it = Const {it = Wasm_exts.Values.I32 i;_}; _}] ->
assert (g.it.gtype = GlobalType (I32Type, Immutable));
i
| _ -> assert false
let read_table_size (m : module_') : int32 =
(* Assumes there is one table *)
let open Wasm_exts.Types in
match m.tables with
| [t] ->
let TableType ({min;max}, _) = t.it.ttype in
if Some min <> max
then raise (LinkError "Expect fixed sized table in first module")
else min
| _ -> raise (LinkError "Expect one table in first module")
let set_memory_size new_size_bytes : module_' -> module_' = fun m ->
let open Wasm_exts.Types in
let page_size = Int64.of_int (64*1024) in
let new_size_pages = Int64.(add (div new_size_bytes page_size) 1L) in
let index_type = if uses_memory64 m then I64IndexType else I32IndexType in
match m.memories with
| [t;t1] ->
{ m with
memories = [(phrase (fun m ->
{ mtype = MemoryType ({min = new_size_pages; max = None}, index_type) }
) t); t1]
}
| [t] ->
{ m with
memories = [phrase (fun m ->
{ mtype = MemoryType ({min = new_size_pages; max = None}, index_type) }
) t]
}
| _ -> raise (LinkError "Expect one memory in first module")
let set_table_size new_size : module_' -> module_' = fun m ->
let open Wasm_exts.Types in
match m.tables with
| [t] ->
{ m with
tables = [ phrase (fun t ->
let TableType (_, ty) = t.ttype in
{ ttype = TableType ({min = new_size; max = Some new_size}, ty) }
) t ]
}
| _ -> raise (LinkError "Expect one table in first module")
let fill_item_import module_name item_name new_base uses_memory64 (m : module_') : module_' =
(* We need to find the right import,
replace all uses of get_global of that import with the constant,
and finally rename all globals
*)
let base_global =
let rec go i = function
| [] -> assert false
| imp::is -> match imp.it.idesc.it with
| GlobalImport _ty
when imp.it.module_name = Lib.Utf8.decode module_name &&
imp.it.item_name = Lib.Utf8.decode item_name ->
Int32.of_int i
| GlobalImport _ ->
go (i + 1) is
| _ ->
go i is
in go 0 m.imports in
let new_base_value = if uses_memory64 then
Wasm_exts.Values.I64 (I64_convert.extend_i32_u new_base)
else
Wasm_exts.Values.I32 new_base
in
m |> fill_global base_global new_base_value uses_memory64
|> remove_imports is_global_import [base_global, base_global]
|> rename_globals Int32.(fun i ->
if i < base_global then i
else if i = base_global then assert false
else sub i one
)
let fill_memory_base_import new_base uses_memory64 : module_' -> module_' =
fill_item_import "env" "__memory_base" new_base uses_memory64
let fill_table_base_import new_base uses_memory64 : module_' -> module_' = fun m ->
let m = fill_item_import "env" "__table_base" new_base uses_memory64 m in
if uses_memory64 then
fill_item_import "env" "__table_base32" new_base uses_memory64 m
else
m
(* Concatenation of modules *)
let join_modules
(em1 : extended_module) (m2 : module_') (ns2 : name_section)
(type_indices : (Wasm_exts.Types.func_type, int32) Hashtbl.t) : extended_module =
let m1 = em1.module_ in
let joined =
{ em1 with
module_ = {
types = m1.types @ m2.types;
globals = m1.globals @ m2.globals;
tables = m1.tables @ m2.tables;
memories = m1.memories @ m2.memories;
funcs = m1.funcs @ m2.funcs;
start = m1.start;
elems = m1.elems @ m2.elems;
datas = m1.datas @ m2.datas;
imports = m1.imports @ m2.imports;
exports = m1.exports @ m2.exports;
};
name = {
em1.name with
function_names = em1.name.function_names @ ns2.function_names;
locals_names = em1.name.locals_names @ ns2.locals_names;
};
motoko = em1.motoko;
}
in
(* If second module has a start, prepend it to the first module's start.
OK to use `Hashtbl.find` below as the first module will have a start, so
we'll have the unit function in the type section already. *)
match m2.start with
| None -> joined
| Some fi -> prepend_to_start fi.it (Hashtbl.find type_indices (Wasm_exts.Types.FuncType ([], []))) joined
(* The main linking function *)
let check_typ is_thing get_typ string_of m1 m2 (i1, i2) =
let t1 = get_typ i1 m1 in
let t2 = get_typ i2 m2 in
let imp = get_import is_thing i1 m1 in
if t1 <> t2 then
let msg = Printf.sprintf
"Type mismatch when linking %s.%s:\nimport type: %s\nexport type: %s"
(string_of_name imp.it.module_name)
(string_of_name imp.it.item_name)
(string_of t1)
(string_of t2)
in
raise (LinkError msg)
let check_fun_typ =
check_typ is_fun_import get_fun_typ Wasm_exts.Types.string_of_func_type
let check_global_typ =
check_typ is_global_import get_global_typ Wasm_exts.Types.string_of_global_type
let align_i32 p n =
let open Int32 in
let p = to_int p in
shift_left (shift_right_logical (add n (sub (shift_left 1l p) 1l)) p) p
let find_fun_export (name : name) (exports : export list) : var option =
List.find_map (fun (export : export) ->
if export.it.name = name then
match export.it.edesc.it with
| FuncExport var -> Some var
| _ -> raise (LinkError (Format.sprintf "Export %s is not a function" (Lib.Utf8.encode name)))
else
None
) exports
let find_global_export (name : name) (exports : export list) : var option =
List.find_map (fun (export : export) ->
if export.it.name = name then
match export.it.edesc.it with
| GlobalExport var -> Some var
| _ -> raise (LinkError (Format.sprintf "Export %s is not global" (Lib.Utf8.encode name)))
else
None
) exports
let remove_got_imports (imports : import list) : import list =
let got_func_str = Lib.Utf8.decode "GOT.func" in
let got_mem_str = Lib.Utf8.decode "GOT.mem" in
let is_got name = name = got_func_str || name = got_mem_str in
List.filter (fun import -> not (is_got import.it.module_name)) imports
let mk_i32_const (i : int32) =
Const (Wasm_exts.Values.I32 i @@ no_region) @@ no_region
let mk_i32_global (i : int32) =
{ gtype = Wasm_exts.Types.GlobalType (Wasm_exts.Types.I32Type, Wasm_exts.Types.Immutable);
value = [mk_i32_const i] @@ no_region }
let mk_i64_const (i : int64) =
Const (Wasm_exts.Values.I64 i @@ no_region) @@ no_region
let mk_i64_global (i : int64) =
{ gtype = Wasm_exts.Types.GlobalType (Wasm_exts.Types.I64Type, Wasm_exts.Types.Immutable);
value = [mk_i64_const i] @@ no_region }
type got_func = {
function_index: int32;
}
type got_mem = {
exported_global_index: int32;
}
type got_kind =
| GotFunc of got_func
| GotMem of got_mem
type got_import = {
global_index: int32;
global_type: Wasm_exts.Types.global_type;
kind: got_kind;
}
let get_global_type import = match import.it.idesc.it with
| GlobalImport global_type -> global_type
| _ -> raise (LinkError "GOT.mem import is not global")
let resolve_got_func global_index import m =
let name = import.it.item_name in
let function_index =
match find_fun_export name m.exports with
| None -> raise (LinkError (Format.sprintf "Can't find export for GOT.func import %s" (Lib.Utf8.encode name)))
| Some export_idx -> export_idx.it
in
let global_type = get_global_type import in
{
global_index;
global_type;
kind = GotFunc { function_index }
}
let resolve_got_mem global_index import m =
let name = import.it.item_name in
let exported_global_index =
match find_global_export name m.exports with
| None -> raise (LinkError (Format.sprintf "Can't find export for GOT.mem import %s" (Lib.Utf8.encode name)))
| Some export_idx -> export_idx.it
in
let global_type = get_global_type import in
{
global_index;
global_type;
kind = GotMem { exported_global_index }
}
let collect_got_imports (m : module_') : got_import list =
let got_func_name = Lib.Utf8.decode "GOT.func" in
let got_mem_name = Lib.Utf8.decode "GOT.mem" in
let get_got_import (allow_normal_globals, global_index, imports) import : (bool * int32 * got_import list) =
let next_index = Int32.add global_index (Int32.of_int 1) in
if import.it.module_name = got_func_name then
let got_func = resolve_got_func global_index import m in
(false, next_index, got_func :: imports)
else if import.it.module_name = got_mem_name then
let got_mem = resolve_got_mem global_index import m in
(false, next_index, got_mem :: imports)
else
(* Implementation restriction: No normal imported globals after GOT globals.
If this would be required in the future, the GOT globals cannot simply be
moved to the beginning of the module's global section because the global
indices would then change and the global accesses in the AST would need
to be patched. *)
let continue_index =
if is_global_import import.it.idesc.it then
(assert allow_normal_globals;
next_index)
else global_index
in
(allow_normal_globals, continue_index, imports)
in
let (_, _, got_imports) =
List.fold_left get_got_import (true, 0l, []) m.imports
in
got_imports
(* For each GOT.mem access, we compute the absolute address of the data pointer.
This is done by adding the library memory base (`lib_heap_start`) to the offset
that is stored in the exported global that corresponds to the GOT.mem import. *)
let patch_got_mem_accesses got_mem_imports memory_base = fun m ->
let phrase_one_to_many f x = List.map (fun y -> { x with it = y }) (f x.it) in
let find_got_mem global_index =
List.find_opt (fun (index, _, _) -> index = global_index) got_mem_imports
in
(* Computes the absolute address of the GOT.mem data pointer *)
let data_pointer exported_global_index = if uses_memory64 m then
[ Const (Wasm_exts.Values.I64 (Int64.of_int32 memory_base) @@ no_region);
GlobalGet (exported_global_index @@ no_region);
Binary (Wasm_exts.Values.I64 I64Op.Add) ]
else
[ Const (Wasm_exts.Values.I32 memory_base @@ no_region);
GlobalGet (exported_global_index @@ no_region);
Binary (Wasm_exts.Values.I32 I32Op.Add) ]
in
let rec instr' = function
| GlobalGet v ->
(match find_got_mem v.it with
| Some (_, _, exported_global_index) -> data_pointer exported_global_index
| None -> [GlobalGet v])
| GlobalSet v ->
(match find_got_mem v.it with
| Some _ -> assert false
| None -> [GlobalSet v])
| Block (ty, is) -> [Block (ty, instrs is)]
| Loop (ty, is) -> [Loop (ty, instrs is)]
| If (ty, is1, is2) -> [If (ty, instrs is1, instrs is2)]
| i -> [i]
and instr (i: instr) : instr list = phrase_one_to_many instr' i
and instrs (is : instr list) : instr list = List.flatten (List.map instr is) in
let func' f = { f with body = instrs f.body } in
let func = phrase func' in
let funcs = List.map func in
{ m with
funcs = funcs m.funcs;
}
(* `table_size` is the size of the table in the merged module before adding GOT.func functions *)
(* `lib_memory_base` is the Wasm const targetting the library memory base (start of data segments) *)
let replace_got_imports (lib_memory_base : int32) (table_size : int32) (imports: got_import list) (m : module_') : module_' =
(* Add functions imported from GOT.func to the table, change GOT.func globals to refer
to the table index of their corresponding function. *)
let got_func_imports = List.filter_map (function
| { global_index; global_type; kind = GotFunc { function_index } } ->
Some (global_index, global_type, function_index)
| _ -> None
) imports
in
let elements = List.map
(fun (_, _, function_index) -> function_index @@ no_region)
got_func_imports
in
let offset_global global_type offset = Wasm_exts.Types.(match global_type with
| GlobalType (I32Type, _) -> mk_i32_global (Int32.add table_size (Int32.of_int offset))
| GlobalType (I64Type, _) -> mk_i64_global (Int64.add (Int64.of_int32 table_size) (Int64.of_int offset))
| _ -> raise (LinkError "GOT.func global type is not supported"))
in
let function_globals = List.mapi (fun offset (global_index, global_type, _) ->
(global_index, offset_global global_type offset))
got_func_imports
in
let element_section =
(* Do not add an empty element section if no GOT.func exist in the module *)
if got_func_imports = [] then None
else
Some {
index = 0l @@ no_region;
offset = [ mk_i32_const table_size ] @@ no_region;
init = elements
}
in
(* Patch AST such that GOT.mem global accesses compute the corresponding data pointers.
Allocate dummy globals in place of the original GOT.mem to maintain the global numbering. *)
let memory_imports = List.filter_map (function
| { global_index; global_type; kind = GotMem { exported_global_index } } ->
Some (global_index, global_type, exported_global_index)
| _ -> None
) imports
in
let dummy_global = Wasm_exts.Types.(function
| GlobalType (I32Type, _) -> mk_i32_global 0l
| GlobalType (I64Type, _) -> mk_i64_global 0L
| _ -> raise (LinkError "GOT.mem global type is not supported"))
in
let dummy_globals = List.map
(fun (global_index, global_type, _) -> (global_index, dummy_global global_type))
memory_imports
in
let patched_module = patch_got_mem_accesses memory_imports lib_memory_base m in
let new_elements = match element_section with
| None -> m.elems
| Some section -> List.append m.elems [section @@ no_region]
in
let new_globals = function_globals @ dummy_globals
|> List.sort (fun (left, _) (right, _) -> compare left right)
|> List.map (fun (_, global) -> global @@ no_region)
in
(* Move GOT globals from import section to the beginning of module's global section.
The movement is based on the following assumption that is checked in `collect_got_imports`:
No normal globals succeed the GOT globals in the import section. *)
{ patched_module with
elems = new_elements;
imports = remove_got_imports m.imports; (* Remove GOT globals at the end of imports section *)
globals = new_globals @ m.globals (* globals preceed existing globals to keep ordering *)
}
(* The first argument specifies the global of the first module indicating the
start of free memory *)
let link (em1 : extended_module) libname (em2 : extended_module) =
let global_exports1 = find_exports is_global_export em1.module_ in
let heap_global =
match NameMap.find_opt (Lib.Utf8.decode "__heap_base") global_exports1 with
| None -> raise (LinkError "First module does not export __heap_base")
| Some gi -> gi in
let dylink0_mem_info =
let rec mem_info = function
| [] -> raise (LinkError "Second module does not have a dylink.0 mem-info section")
| MemInfo mem_info :: _ -> mem_info
| _ :: remainder -> mem_info remainder
in
mem_info em2.dylink0
in
(* Beginning of unused space *)
let old_heap_start = read_global heap_global em1.module_ in
let lib_heap_start = align_i32 dylink0_mem_info.memory_alignment old_heap_start in
let new_heap_start = align_i32 8l (Int32.add lib_heap_start dylink0_mem_info.memory_size) in
if uses_memory64 em1.module_ then
begin
(* The RTS data segments must fit below 4.5MB according to the persistent heap layout.
The first 4MB are reserved for the Rust call stack such that RTS data segments are limited to 512KB. *)
let max_rts_stack_size = 4 * 1024 * 1024 in
let max_rts_data_segment_size = 512 * 1024 in
(if (Int32.to_int new_heap_start) > max_rts_stack_size + max_rts_data_segment_size then
(raise (TooLargeDataSegments (Printf.sprintf "The Wasm data segment size exceeds the supported maxmimum of %nMB." max_rts_data_segment_size)))
else
()
)
end else ();
let max x y = if x >= y then x else y in (* use `Int.max` when bumping to 4.13 *)
(* Rust requires a table offset of at least 1 as elem[0] is considered invalid.
There are debug checks panicking if the element index is zero.
On the other hand, elem[0] can be used by the Motoko backend code (em1),
as correct Rust-generated Wasm code does not call elem[0]. *)
let old_table_size = max (read_table_size em1.module_) 1l in
let lib_table_start = align_i32 dylink0_mem_info.table_alignment old_table_size in
let uses_memory64 = uses_memory64 em1.module_ in
(* Fill in memory and table base pointers *)
let dm2 = em2.module_
|> fill_memory_base_import lib_heap_start uses_memory64
|> fill_table_base_import lib_table_start uses_memory64 in
let got_imports = collect_got_imports dm2 in
(* Link functions *)
let fun_required1 = find_imports is_fun_import libname em1.module_ in
let fun_required2 = find_imports is_fun_import "env" dm2 in
let fun_exports1 = find_exports is_fun_export em1.module_ in
let fun_exports2 = find_exports is_fun_export dm2 in
(* Resolve imports, to produce a renumbering function: *)
let fun_resolved12 = resolve fun_required1 fun_exports2 in
let fun_resolved21 = resolve fun_required2 fun_exports1 in
let (funs1, funs2) =
calculate_renaming
(count_imports is_fun_import em1.module_)
(Lib.List32.length em1.module_.funcs)
(count_imports is_fun_import dm2)
fun_resolved12
fun_resolved21 in
List.iter (check_fun_typ em1.module_ dm2) fun_resolved12;
List.iter (check_fun_typ dm2 em1.module_) fun_resolved21;
(* Link globals *)
let global_required1 = find_imports is_global_import libname em1.module_ in
let global_required2 = find_imports is_global_import "env" dm2 in
let global_exports2 = find_exports is_global_export dm2 in
(* Resolve imports, to produce a renumbering *)
let global_resolved12 = resolve global_required1 global_exports2 in
let global_resolved21 = resolve global_required2 global_exports1 in
let (globals1, globals2) =
calculate_renaming
(count_imports is_global_import em1.module_)
(Lib.List32.length em1.module_.globals)
(count_imports is_global_import dm2)
global_resolved12
global_resolved21 in
assert (global_required1 = []); (* so far, we do not import globals *)
List.iter (check_global_typ em1.module_ dm2) global_resolved12;
List.iter (check_global_typ dm2 em1.module_) global_resolved21;
(* Rename types in both modules to eliminate duplicate types. *)
(* Maps function types to their indices in the new module we're creating *)
let type_indices : (Wasm_exts.Types.func_type, int32) Hashtbl.t = Hashtbl.create 100 in
(* Get index of a function type. Creates a new one if we haven't added this
type yet. *)
let add_or_get_ty (ty : Wasm_exts.Types.func_type) =
match Hashtbl.find_opt type_indices ty with
| None ->
let idx = Int32.of_int (Hashtbl.length type_indices) in
Hashtbl.add type_indices ty idx;
idx
| Some idx ->
idx
in
(* Rename a type in a module. First argument is the list of types in the module. *)
let ty_renamer (tys : Wasm_exts.Types.func_type phrase list) (t : int32) : int32 =
let fun_ty = List.nth tys (Int32.to_int t) in
add_or_get_ty fun_ty.it
in
let is_active data_segment = match data_segment.it.dmode.it with
| Active _ -> true
| _ -> false
in
let em1_active_data_segments = List.filter is_active em1.module_.datas in
let is_passive data_segment = match data_segment.it.dmode.it with
| Passive -> true
| _ -> false
in
let em1_passive_data_segments = List.filter is_passive em1.module_.datas in
(* Check that the first module generated by the compiler backend does not use
active data segments. *)
if uses_memory64 then
assert ((List.length em1_active_data_segments) = 0)
else ();
let dm2_data_segment_offset = List.length em1_passive_data_segments in
(* Rename types in first module *)
let em1_tys =
map_module (fun m -> { (rename_types (ty_renamer m.types) m) with types = [] }) em1
in
(* Rename types in second module *)
let dm2 =
{ (rename_types (ty_renamer dm2.types) dm2) with types = [] }
in
(* Generate type section for the final module *)
let type_indices_sorted : type_ list =
Hashtbl.to_seq type_indices |>
List.of_seq |>
List.sort (fun (_, idx1) (_, idx2) -> compare idx1 idx2) |>
List.map (fun (ty, _) -> ty @@ no_region)
in
let add_initial_call function_name =
match NameMap.find_opt (Lib.Utf8.decode function_name) fun_exports2 with
| None -> fun em -> em
| Some fi -> prepend_to_start (funs2 fi) (add_or_get_ty (Wasm_exts.Types.FuncType ([], [])))
in
let new_table_size =
let got_func_imports = List.filter (function
| { kind = GotFunc _; _ } -> true
| _ -> false) got_imports in
Int32.add (Int32.add lib_table_start dylink0_mem_info.table_size) (Int32.of_int (List.length got_func_imports))
in
(* Rust generates active data segments for the runtime system code that are not supported with orthogonal persistence.
Therefore, for enhanced orthogonal persistence, make the data segments passive and load them on initialization to
their reserved static space.
Note: If Rust would also use passive data segments in future, the segment load indices need to be renumbered. *)
let make_rts_data_segments_passive : module_' -> module_' = fun m ->
let segment_mode' (dmode : segment_mode') =
match dmode with
| Active _ -> Passive
| _ -> raise (LinkError "Passive data segments are not yet supported in the RTS module")
in
let segment_mode = phrase (segment_mode') in
let data_segment' (s : data_segment') = { s with dmode = segment_mode s.dmode; } in
let data_segment = phrase (data_segment') in
let data_segments = List.map data_segment in
{ m with datas = data_segments m.datas; }
in
let load_rts_data_segments numbering_offset data_segments : module_' -> module_' = fun m ->
let imported_functions = Int32.to_int (count_imports is_fun_import m) in
let start_index = Int32.to_int (match m.start with
| Some index -> index.it
| None -> raise (LinkError "The module has no start function to inject"))
in
let local_start_function = Int.sub start_index imported_functions in
if local_start_function < 0 then
raise (LinkError "The module start refers to an imported function that cannot be injected");
assert (local_start_function < (List.length m.funcs));
let load_passive_segment index data_segment =
let segment_index = Int32.of_int (Int.add index numbering_offset) in
let compile_const_i32 value = Const (Wasm_exts.Values.I32 value @@ no_region) @@ no_region in
let data_target = match data_segment.it.dmode.it with
| Active { offset; _ } -> offset.it
| _ -> raise (LinkError "Passive data segments are not yet supported in the RTS module")
in
let data_length = Int32.of_int (String.length data_segment.it.dinit) in
let memory_init = MemoryInit (segment_index @@ no_region) @@ no_region in
data_target @
[
compile_const_i32 0l; (* data offset *)
compile_const_i32 data_length;
memory_init
]
in
let load_passive_segments = List.concat (List.mapi load_passive_segment data_segments) in
let inject_in_func' code f = { f with body = code @ f.body } in
let inject_in_func code = phrase (inject_in_func' code) in
let patch_functions functions =
List.mapi (fun index func ->
if index = local_start_function then
inject_in_func load_passive_segments func
else func
) functions
in
{ m with funcs = patch_functions m.funcs; }
in
let merged = join_modules
( em1_tys
|> map_module (fun m -> { m with types = type_indices_sorted })
|> map_module (remove_imports is_fun_import fun_resolved12)
|> map_name_section (remove_fun_imports_name_section fun_resolved12)
|> map_module (remove_imports is_global_import global_resolved12)
|> rename_funcs_extended funs1
|> rename_globals_extended globals1
|> map_module (set_global heap_global new_heap_start)
|> map_module (set_memory_size (I64_convert.extend_i32_u new_heap_start))
|> map_module (set_table_size new_table_size)
)
( dm2
|> (if uses_memory64 then make_rts_data_segments_passive else (fun m -> m))
|> remove_imports is_fun_import fun_resolved21
|> remove_imports is_global_import global_resolved21
|> remove_imports is_memory_import [0l, 0l]
|> remove_imports is_table_import [0l, 0l]
|> rename_funcs funs2
|> rename_globals globals2
|> remove_export is_fun_export "__wasm_call_ctors"
|> remove_export is_fun_export "__wasm_apply_data_relocs"
)
( em2.name
|> remove_fun_imports_name_section fun_resolved21
|> rename_funcs_name_section funs2
)
type_indices
|> add_initial_call "__wasm_call_ctors" (* second call *)
|> add_initial_call "__wasm_apply_data_relocs" (* very first call before `__wasm_call_ctors` *)
|> remove_non_ic_exports (* only sane if no additional files get linked in *)
|> (if uses_memory64 then map_module (load_rts_data_segments dm2_data_segment_offset dm2.datas) else (fun m -> m))
in
(* Rename global and function indices in GOT stuff *)
let got_imports =
List.map (function
| { global_index; global_type; kind = GotFunc { function_index }} ->
{ global_index = globals2 global_index;
global_type;
kind = GotFunc { function_index = funs2 function_index }
}
| { global_index; global_type; kind = GotMem { exported_global_index }} ->
{ global_index = globals2 global_index;
global_type;
kind = GotMem {
exported_global_index = globals2 exported_global_index;
}
}
) got_imports
in
(* Replace GOT imports with globals referring to implementing functions or data pointers *)
let table_size = Int32.add lib_table_start dylink0_mem_info.table_size in
let final = replace_got_imports lib_heap_start table_size got_imports merged.module_ in
{ merged with module_ = final }