1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
module StdList = List
module Format =
struct
let with_str_formatter f x =
let b = Buffer.create 16 in
let ppf = Format.formatter_of_buffer b in
Format.pp_set_geometry ppf ~max_indent:2 ~margin:(1000000010-1); (* hack to output all on one line *)
Format.fprintf ppf "@[%a@]" f x;
Format.pp_print_flush ppf ();
Buffer.contents b
let display pp ppf x =
Format.fprintf ppf "@\n@[<v 2> %a@]" pp x
end
module Fun =
struct
let curry f x y = f (x, y)
let uncurry f (x, y) = f x y
let rec repeat n f x =
if n = 0 then () else (f x; repeat (n - 1) f x)
end
module Int =
struct
let log2 n =
if n <= 0 then failwith "log2";
let rec loop acc n = if n = 1 then acc else loop (acc + 1) (n lsr 1) in
loop 0 n
let is_power_of_two n =
if n < 0 then failwith "is_power_of_two";
n <> 0 && n land (n - 1) = 0
end
module Uint32 =
struct
type t = int32
let of_string str = Int32.of_string ("0u" ^ str)
let of_string_opt str = Int32.of_string_opt ("0u" ^ str)
let to_string n = Printf.sprintf "%lu" n
let add = Int32.add
let sub = Int32.sub
let mul = Int32.mul
let succ = Int32.succ
let zero = Int32.zero
let one = Int32.one
let of_int = Int32.of_int
let to_int = Int32.to_int
let logand = Int32.logand
let logor = Int32.logor
let shift_right_logical = Int32.shift_right_logical
let of_int32 x = x
let to_int32 x = x
let compare i1 i2 =
if i1 < 0l && i2 >= 0l then 1
else if i1 >= 0l && i2 < 0l then -1
else Int32.compare i1 i2
end
module CRC =
struct
let crc8 (bs : string) : int =
let inner _ = function
| crc when crc land 0x80 <> 0 -> (crc lsl 1) lxor 0x7
| crc -> crc lsl 1 in
let outer crc b =
List.fold_right inner [0;1;2;3;4;5;6;7] (Char.code b lxor crc) land 0xFF in
Seq.fold_left outer 0 (String.to_seq bs)
let crc32 (bs : string) : int32 =
Optint.(to_int32 (Checkseum.Crc32.digest_string bs 0 (String.length bs) zero))
end
module Hex =
struct
let hexdigit = let open Char in function
| c when c >= '0' && c <= '9' -> code c - code '0'
| c when c >= 'A' && c <= 'F' -> code c - code 'A' + 10
| c when c >= 'a' && c <= 'f' -> code c - code 'a' + 10
| _ -> assert false
let bytes_of_hex hex : string =
let open String in
let extract i _ =
Char.chr (hexdigit (get hex (i * 2)) lsl 4 lor hexdigit (get hex (i * 2 + 1))) in
Bytes.to_string (Bytes.mapi extract (Bytes.create (length hex / 2)))
let int_of_hex_byte hex : int =
assert (String.length hex = 2);
String.(hexdigit (get hex 0) lsl 4 lor hexdigit (get hex 1))
let hex_of_nibble =
let open Char in
function
| c when 0 <= c && c <= 9 -> chr (code '0' + c)
| c when 10 <= c && c <= 15 -> chr (code 'A' + (c - 10))
| _ -> assert false
let hex_of_byte i : string =
String.init 2 (function
| 0 -> hex_of_nibble (i / 16)
| 1 -> hex_of_nibble (i mod 16)
| _ -> assert false)
let hex_of_char c = hex_of_byte (Char.code c)
let hex_of_bytes bytes : string =
let open Stdlib.String in
of_seq (Stdlib.Seq.flat_map (fun c -> to_seq (hex_of_char c)) (to_seq bytes))
end
module Base32 =
struct
let decode input =
let len = String.length input in
let buf = Buffer.create (len / 2) in
let rec evac = function
| v, b when b >= 8 ->
let b' = b - 8 in
Buffer.add_uint8 buf (v lsr b');
evac (v land (1 lsl b' - 1), b')
| vb -> vb in
let b32 a = function
| v when v >= 'A' && v <= 'Z' -> a lsl 5 lor (Char.code v - 65)
| v when v >= '2' && v <= '7' -> a lsl 5 lor (Char.code v - 24)
| '=' -> a
| _ -> raise (Invalid_argument "Char out of base32 alphabet") in
let pump (v, b) c = evac (b32 v c, b + 5) in
try
ignore (Seq.fold_left pump (0, 0) (String.to_seq input));
Ok (Buffer.contents buf)
with Invalid_argument s -> Error s
let encode input =
let len = String.length input in
let buf = Buffer.create (len * 2) in
let b32 = function
| v when v <= 25 -> 65 + v
| v -> 24 + v in
let rec evac = function
| v, b when b >= 5 ->
let b' = b - 5 in
Buffer.add_uint8 buf (b32 (v lsr b'));
evac (v land (1 lsl b' - 1), b')
| vb -> vb
in
let pump (v, b) c = evac (v lsl 8 lor (Char.code c land 0xFF), b + 8) in
let v, b = Seq.fold_left pump (0, 0) (String.to_seq input) in
if b > 0 then ignore (evac (v lsl 4, b + 4));
Buffer.contents buf
end
module String =
struct
let implode cs =
let buf = Buffer.create 80 in
List.iter (Buffer.add_char buf) cs;
Buffer.contents buf
let implode_map f cs =
let buf = Buffer.create 80 in
List.iter (fun c -> Buffer.add_char buf (f c)) cs;
Buffer.contents buf
let explode s =
let cs = ref [] in
for i = String.length s - 1 downto 0 do cs := s.[i] :: !cs done;
!cs
let explode_map f s =
let cs = ref [] in
for i = String.length s - 1 downto 0 do cs := f s.[i] :: !cs done;
!cs
(** Stack.fold (fun x y -> y ^ c ^ x) "" (String.split s c) == s *)
let split s c =
let len = String.length s in
let rec loop i =
if i > len then [] else
let j = try String.index_from s i c with Not_found -> len in
String.sub s i (j - i) :: loop (j + 1)
in loop 0
let breakup s n =
let rec loop i =
let len = min n (String.length s - i) in
if len = 0 then [] else String.sub s i len :: loop (i + len)
in loop 0
let rec find_from_opt f s i =
if i = String.length s then
None
else if f s.[i] then
Some i
else
find_from_opt f s (i + 1)
let chop_prefix prefix s =
let prefix_len = String.length prefix in
let s_len = String.length s in
if s_len < prefix_len then
None
else if String.sub s 0 prefix_len = prefix then
Some (String.sub s prefix_len (s_len - prefix_len))
else
None
let starts_with prefix s = (* in OCaml 4.13 *)
match chop_prefix prefix s with
| Some _ -> true
| _ -> false
let chop_suffix suffix s =
let suffix_len = String.length suffix in
let s_len = String.length s in
if s_len < suffix_len then
None
else if String.sub s (s_len - suffix_len) suffix_len = suffix then
Some (String.sub s 0 (s_len - suffix_len))
else
None
let lightweight_escaped s =
let buf = Buffer.create (String.length s) in
for i = 0 to String.length s - 1 do
match s.[i] with
| '\"' | '\'' | '\\' as c ->
Buffer.add_char buf '\\'; Buffer.add_char buf c
| '\n' -> Buffer.add_string buf "\\n"
| '\r' -> Buffer.add_string buf "\\r"
| '\t' -> Buffer.add_string buf "\\t"
| c -> Buffer.add_char buf c
done;
Buffer.contents buf
(* Courtesy of Claude.ai *)
let levenshtein_distance s t =
let m = String.length s
and n = String.length t in
(* Ensure s is the shorter string for optimization *)
let (s, t, m, n) = if m > n then (t, s, n, m) else (s, t, m, n) in
(* Initialize the previous row *)
let previous_row = Array.init (m + 1) (fun i -> i) in
(* Compute the distance *)
for i = 1 to n do
let current_row = Array.make (m + 1) 0 in
current_row.(0) <- i;
for j = 1 to m do
let cost = if s.[j-1] = t.[i-1] then 0 else 1 in
current_row.(j) <- min
(min
(previous_row.(j) + 1) (* Deletion *)
(current_row.(j-1) + 1) (* Insertion *)
)
(previous_row.(j-1) + cost) (* Substitution *)
done;
(* Swap rows *)
Array.blit current_row 0 previous_row 0 (m + 1)
done;
(* Return the distance *)
previous_row.(m)
end
module Utf8 =
struct
type t = int list
exception Utf8 = Wasm.Utf8.Utf8
let rec is_valid s = is_valid' (String.explode_map Char.code s)
and is_valid' = function
| [] -> true
| b1::bs when b1 < 0x80 ->
is_valid' bs
| b1::bs when b1 < 0xc0 -> false
| b1::b2::bs when b1 < 0xe0 ->
(b2 land 0xc0 = 0x80) && is_valid' bs
| b1::b2::b3::bs when b1 < 0xf0 ->
(b2 land 0xc0 = 0x80) && (b3 land 0xc0 = 0x80) && is_valid' bs
| b1::b2::b3::b4::bs when b1 < 0xf8 ->
(b2 land 0xc0 = 0x80) && (b3 land 0xc0 = 0x80) && (b4 land 0xc0 = 0x80) && is_valid' bs
| _ -> false
let con b = if b land 0xc0 = 0x80 then b land 0x3f else raise Utf8
let code min n =
if n < min || (0xd800 <= n && n < 0xe000) || n >= 0x110000 then raise Utf8
else n
let rec decode s = decode' [] (String.explode_map Char.code s)
and decode' acc = function
| [] -> List.rev acc
| b1::bs when b1 < 0x80 ->
decode' (code 0x0 b1 :: acc) bs
| b1::bs when b1 < 0xc0 -> raise Utf8
| b1::b2::bs when b1 < 0xe0 ->
decode' (code 0x80 ((b1 land 0x1f) lsl 6 + con b2) :: acc) bs
| b1::b2::b3::bs when b1 < 0xf0 ->
decode' (code 0x800 ((b1 land 0x0f) lsl 12 + con b2 lsl 6 + con b3) :: acc) bs
| b1::b2::b3::b4::bs when b1 < 0xf8 ->
decode' (code 0x10000 ((b1 land 0x07) lsl 18 + con b2 lsl 12 + con b3 lsl 6 + con b4) :: acc) bs
| _ -> raise Utf8
let con n = 0x80 lor (n land 0x3f)
let rec encode ns = String.implode_map Char.chr (encode' [] ns)
and encode' acc = function
| [] -> List.rev acc
| n::ns when n < 0 -> raise Utf8
| n::ns when n < 0x80 ->
encode' (n :: acc) ns
| n::ns when n < 0x800 ->
encode' (con n :: 0xc0 lor (n lsr 6) :: acc) ns
| n::ns when n < 0x10000 ->
encode' (con n :: con (n lsr 6) :: 0xe0 lor (n lsr 12) :: acc) ns
| n::ns when n < 0x110000 ->
encode' (con n :: con (n lsr 6) :: con (n lsr 12) :: 0xf0 lor (n lsr 18) :: acc) ns
| _ -> raise Utf8
end
module List =
struct
let equal p xs ys =
try List.for_all2 p xs ys with _ -> false
let rec make n x = make' n x []
and make' n x xs =
if n = 0 then xs else make' (n - 1) x (x::xs)
let rec table n f = table' n f []
and table' n f xs =
if n = 0 then xs else table' (n - 1) f (f (n - 1) :: xs)
let group f l =
let rec grouping acc = function
| [] -> acc
| hd::tl ->
let l1,l2 = List.partition (f hd) tl in
grouping ((hd::l1)::acc) l2
in grouping [] l
let rec take n xs =
match n, xs with
| _ when n <= 0 -> []
| n, x::xs' when n > 0 -> x :: take (n - 1) xs'
| _ -> failwith "take"
let rec drop n xs =
match n, xs with
| 0, _ -> xs
| n, _::xs' when n > 0 -> drop (n - 1) xs'
| _ -> failwith "drop"
let split_at n xs =
if n <= List.length xs
then (take n xs, drop n xs)
else (xs, [])
let hd_opt = function
| x :: _ -> Some x
| _ -> None
let rec last = function
| [x] -> x
| _::xs -> last xs
| [] -> failwith "last"
let last_opt = function
| [] -> None
| xs -> Some (last xs)
let rec split_last = function
| [x] -> [], x
| x::xs -> let ys, y = split_last xs in x::ys, y
| [] -> failwith "split_last"
let rec index_where p xs = index_where' p xs 0
and index_where' p xs i =
match xs with
| [] -> None
| x::xs' when p x -> Some i
| x::xs' -> index_where' p xs' (i+1)
let index_of x = index_where ((=) x)
let rec compare f xs ys =
match xs, ys with
| [], [] -> 0
| [], _ -> -1
| _, [] -> +1
| x::xs', y::ys' ->
match f x y with
| 0 -> compare f xs' ys'
| n -> n
let rec is_ordered f xs =
match xs with
| [] | [_] -> true
| x1::x2::xs' ->
match f x1 x2 with
| -1 | 0 -> is_ordered f (x2::xs')
| _ -> false
let rec is_strictly_ordered f xs =
match xs with
| [] | [_] -> true
| x1::x2::xs' ->
match f x1 x2 with
| -1 -> is_strictly_ordered f (x2::xs')
| _ -> false
let rec iter_pairs f = function
| [] -> ()
| x::ys -> List.iter (fun y -> f x y) ys; iter_pairs f ys
let rec is_prefix equal prefix list =
match prefix with
| [] -> true
| hd :: tl ->
(match list with
| [] -> false
| hd' :: tl' -> equal hd hd' && is_prefix equal tl tl')
end
module List32 =
struct
let rec make n x = make' n x []
and make' n x xs =
if n = 0l then xs else make' (Int32.sub n 1l) x (x::xs)
let rec length xs = length' xs 0l
and length' xs n =
match xs with
| [] -> n
| _::xs' when n < Int32.max_int -> length' xs' (Int32.add n 1l)
| _ -> failwith "length"
let rec nth xs n =
match n, xs with
| 0l, x::_ -> x
| n, _::xs' when n > 0l -> nth xs' (Int32.sub n 1l)
| _ -> failwith "nth"
let rec take n xs =
match n, xs with
| 0l, _ -> []
| n, x::xs' when n > 0l -> x :: take (Int32.sub n 1l) xs'
| _ -> failwith "take"
let rec drop n xs =
match n, xs with
| 0l, _ -> xs
| n, _::xs' when n > 0l -> drop (Int32.sub n 1l) xs'
| _ -> failwith "drop"
end
module Array =
struct
include Array
let rec compare f x y = compare' f x y 0
and compare' f x y i =
match i = Array.length x, i = Array.length y with
| true, true -> 0
| true, false -> -1
| false, true -> +1
| false, false ->
match f x.(i) y.(i) with
| 0 -> compare' f x y (i + 1)
| n -> n
let for_all2 p xs ys =
if Array.length xs <> Array.length ys then failwith "for_all2"
else
let rec go i =
i = Array.length xs || (p xs.(i) ys.(i) && go (i + 1))
in
go 0
end
module Array32 =
struct
let make n x =
if n < 0l || Int64.of_int32 n > Int64.of_int max_int then
raise (Invalid_argument "Array32.make");
Array.make (Int32.to_int n) x
let length a = Int32.of_int (Array.length a)
let index_of_int32 i =
if i < 0l || Int64.of_int32 i > Int64.of_int max_int then -1 else
Int32.to_int i
let get a i = Array.get a (index_of_int32 i)
let set a i x = Array.set a (index_of_int32 i) x
let blit a1 i1 a2 i2 n =
Array.blit a1 (index_of_int32 i1) a2 (index_of_int32 i2) (index_of_int32 n)
end
module Bigarray =
struct
open Bigarray
module Array1_64 =
struct
let create kind layout n =
if n < 0L || n > Int64.of_int max_int then
raise (Invalid_argument "Bigarray.Array1_64.create");
Array1.create kind layout (Int64.to_int n)
let dim a = Int64.of_int (Array1.dim a)
let index_of_int64 i =
if i < 0L || i > Int64.of_int max_int then -1 else
Int64.to_int i
let get a i = Array1.get a (index_of_int64 i)
let set a i x = Array1.set a (index_of_int64 i) x
let sub a i n = Array1.sub a (index_of_int64 i) (index_of_int64 n)
end
end
module Seq =
struct
let rec for_all p s = match s () with
| Seq.Nil -> true
| Seq.Cons (x, s') -> p x && for_all p s'
end
module Option =
struct
let get o x = Option.value o ~default:x
let exists f o = Option.to_list o |> StdList.exists f
let map2 f a b =
match a, b with
| Some a, Some b -> Some (f a b)
| _ -> None
module Syntax =
struct
let (let+) x f = Option.map f x
let (and+) x y = match x, y with
| Some x, Some y -> Some (x, y)
| _ -> None
let (let*) = Option.bind
end
end
module Promise =
struct
type 'a t = 'a option ref
exception Promise
let make () = ref None
let make_fulfilled x = ref (Some x)
let fulfill p x = if !p = None then p := Some x else raise Promise
let is_fulfilled p = !p <> None
let value_opt p = !p
let value p = match !p with Some x -> x | None -> raise Promise
let lazy_value p f =
begin
if not (is_fulfilled p) then
let x = f () in
(* Evaluating f might have actually fulfilled this. We assume f to be pure
(or at least be idempotent), and do not try to update it again.
*)
if not (is_fulfilled p) then fulfill p x
end;
value p
end
module AllocOnUse =
struct
(*
A slighty more elaborate form of a promise: It describes something that can
be allocated, defined, and used (e.g. a Wasm function with a function id). It
will only be allocated if it is both defined and used. Cyclic use is supported,
e.g. the code that defines the thing will already be able to use it.
Beware: Calling def twice is allowed, the second one will be ignored.
Re `… Lazy.t` vs. `unit -> …`:
We use `… Lazy.t` for thunks that will be called exactly once (e.g. producing the
definition), but `unit -> …` for functions called many times with different
results (e.g. allocation)
*)
type ('a, 'b) alloc = unit -> ('a * ('b -> unit))
type ('a, 'b) t' =
| UnUsedUnDef of ('a, 'b) alloc
| UsedUnDef of 'a * ('b -> unit)
| UnUsedDef of ('a, 'b) alloc * ('b Lazy.t)
| UsedDef of 'a
type ('a, 'b) t = ('a, 'b) t' ref
let make : ('a, 'b) alloc -> ('a, 'b) t =
fun alloc -> ref (UnUsedUnDef alloc)
let def : ('a, 'b) t -> ('b Lazy.t) -> unit =
fun r mk -> match !r with
| UnUsedUnDef alloc ->
r := UnUsedDef (alloc, mk)
| UsedUnDef (a, fill) ->
r := UsedDef a;
fill (Lazy.force mk);
| UnUsedDef _ | UsedDef _ ->
()
let use : ('a, 'b) t -> 'a =
fun r -> match !r with
| UnUsedUnDef alloc ->
let (a, fill) = alloc () in
r := UsedUnDef (a, fill);
a
| UsedUnDef (a, fill) ->
a
| UnUsedDef (alloc, mk) ->
let (a, fill) = alloc () in
r := UsedDef a;
fill (Lazy.force mk);
a
| UsedDef a ->
a
end
module FilePath =
struct
let segments p = String.split p '/'
let normalise file_path =
if file_path = "" then "" else
let has_trailing_slash =
Stdlib.Option.is_some (String.chop_suffix "/" file_path) in
let has_leading_slash = not (Filename.is_relative file_path) in
let acc = Stack.create () in
segments file_path |> Stdlib.List.iter
(function
| "" -> ()
| "." -> ()
| ".." ->
if Stack.is_empty acc || Stack.top acc = ".."
then Stack.push ".." acc
else ignore (Stack.pop acc)
| segment -> Stack.push segment acc);
let result = Stack.fold (fun x y -> y ^ "/" ^ x) "" acc in
if result = ""
then
(if has_leading_slash then "/" else
(if has_trailing_slash then "./" else "."))
else
(if has_leading_slash then "/" else "") ^
(if has_trailing_slash then result
else Stdlib.Option.get (String.chop_suffix "/" result))
let relative_to base path =
String.chop_prefix
(normalise (base ^ "/"))
(normalise path)
let make_absolute base path =
if not (Filename.is_relative path)
then path
else normalise (Filename.concat base path)
let is_subpath base path =
if Filename.is_relative base || Filename.is_relative path
then assert false
(* We can't just check for prefixing on the string because
/path/tosomething is not a subpath of /path/to*)
else List.is_prefix (=) (segments base) (segments path)
(* TODO: this function does not belong here *)
(* When opening is successful, but there is a case mismatch (because the file
system is case insensitive), generate a warning. *)
let open_in path : in_channel * string list =
let ic = Stdlib.open_in path in
let dir, base = Filename.(dirname path, basename path) in
(* TODO: we could check dir too, but it's hairier *)
let files = Sys.readdir dir in
if not (Array.exists (fun name -> name = base) files) then
begin
let open Stdlib.String in
let lbase = lowercase_ascii base in
if Array.exists (fun name -> lowercase_ascii name = lbase) files then
let message = Printf.sprintf "file %s has been located with a name of different case" base in
ic, [message]
else
let message = Printf.sprintf "file %s has been located with a different name" base in
ic, [message]
end
else ic, []
end
[@@@warning "-60-32"]
module Test =
struct
(* need to put tests in this file because
dune does not like it if other files in lib depend on Lib
Maybe we should break up lib into its components, now that
it is a dune library.
*)
let%test "bytes_of_hex DEADBEEF" =
Hex.bytes_of_hex "DEADBEEF" = "\xDE\xAD\xBE\xEF"
let%test "bytes_of_hex 0000" =
Hex.bytes_of_hex "0000" = "\x00\x00"
let%test "bytes_of_hex empty" =
Hex.bytes_of_hex "" = ""
let%test "int_of_hex_byte 00" = Hex.int_of_hex_byte "00" = 0
let%test "int_of_hex_byte AB" = Hex.int_of_hex_byte "AB" = 0xAB
let%test "int_of_hex_byte FF" = Hex.int_of_hex_byte "FF" = 0xFF
(* see https://crccalc.com/ *)
let %test "crc8 DEADBEEF" = CRC.crc8 "\xDE\xAD\xBE\xEF" = 0xCA
let %test "crc8 empty" = CRC.crc8 "" = 0x00
let %test "crc8 0000" = CRC.crc8 "\x00\x00" = 0x00
let%test "Base32.decode empty" = Base32.decode "" = Ok ""
let%test "Base32.decode 0000000000" = Base32.decode "AAAAAAA" = Ok "\x00\x00\x00\x00"
let%test "Base32.decode 000000000000" = Base32.decode "AAAAAAAA" = Ok "\x00\x00\x00\x00\x00"
let%test "Base32.decode DEADBEEF" = Base32.decode "32W353Y" = Ok "\xDE\xAD\xBE\xEF"
let%test "Utf8.decode prim emoji" = Wasm.Utf8.encode (Utf8.decode "mo:⛔") = "mo:⛔"
let%test "Utf8.encode prim emoji" = Utf8.encode (Wasm.Utf8.decode "mo:⛔") = "mo:⛔"
let%test "Utf8.encode decode large" =
(* this test overflows if we use Wasm.Utf8 functions instead *)
let b = Buffer.create 16 in
for i = 0 to 65535*16 do
Buffer.add_char b (Char.chr (i land 0x7F))
done;
let s = Buffer.contents b in
Utf8.is_valid s &&
Utf8.encode (Utf8.decode s) = s
let%test "Utf8.is_valid agrees with Utf8.decode for single-byte strings" =
let rec loop f i =
if i > 0xFF then true
else if not (f i) then false
else loop f (i + 1)
in loop (fun i ->
let s = Utf8.encode [i] in
Utf8.is_valid s = (try (ignore (Utf8.decode s); true) with Utf8.Utf8 -> false)
) 0
let%test "String.split \"\"" = String.split "" '/' = [""]
let%test "String.split \"/\"" = String.split "/" '/' = ["";""]
let%test "String.split \"//\"" = String.split "//" '/' = ["";"";""]
let%test "String.split \"a/b/c\"" = String.split "a/b/c" '/' = ["a";"b";"c"]
let%test "String.split \"a/b//c\"" = String.split "a/b//c" '/' = ["a";"b";"";"c"]
(* FilePath tests *)
let normalise_test_case input expected =
let actual = FilePath.normalise input in
Stdlib.String.equal actual expected ||
(Printf.printf
"\nExpected: %s\nActual: %s\n"
expected
actual;
false)
let relative_to_test_case root contained expected =
let actual = FilePath.relative_to root contained in
let show = function
| None -> "None"
| Some s -> "Some " ^ s in
Stdlib.Option.equal Stdlib.String.equal actual expected ||
(Printf.printf
"\nExpected: %s\nActual: %s\n"
(show expected)
(show actual);
false)
let%test "it removes leading current directory" =
normalise_test_case "./ListClient.mo" "ListClient.mo"
let%test "it removes leading `./` for relative paths" =
normalise_test_case "./lib/foo" "lib/foo"
let%test "it removes duplicate `//`s" =
normalise_test_case ".//lib/foo" "lib/foo"
let%test "it preserves trailing slashes" =
normalise_test_case "lib/foo/" "lib/foo/"
let%test "it combines multiple trailing slashes" =
normalise_test_case "lib/foo//" "lib/foo/"
let%test "it drops intermediate references to the `.` directory" =
normalise_test_case "lib/./foo/" "lib/foo/"
let%test "it applies parent directory traversals" =
normalise_test_case "lib/../foo/" "foo/"
let%test "it keeps parent directory references at the start of a path" =
normalise_test_case "../foo/lib" "../foo/lib"
let%test "it keeps multiple parent directory references at the start of a path" =
normalise_test_case "../../foo/lib" "../../foo/lib"
let%test "it does everything at once" =
normalise_test_case "../foo//.././lib" "../lib"
let%test "it handles absolute paths" =
normalise_test_case "/foo" "/foo"
let%test "it handles absolute directory paths" =
normalise_test_case "/foo/./lib/" "/foo/lib/"
let%test "it handles ." =
normalise_test_case "." "."
let%test "it handles ./" =
normalise_test_case "./." "."
let%test "it handles ./" =
normalise_test_case "./" "./"
let%test "it handles .//" =
normalise_test_case ".//" "./"
let%test "it makes one absolute path relative to another one" =
relative_to_test_case
"/home/project"
"/home/project/src/main.mo"
(Some "src/main.mo")
let%test "it's robust in the face of trailing slashes" =
relative_to_test_case
"/home/project/"
"/home/project/src/main.mo"
(Some "src/main.mo")
let%test "it makes a file path relative to a path" =
relative_to_test_case
"/home/project"
"/home/project/main.mo"
(Some "main.mo")
let%test "it preserves trailing slashes" =
relative_to_test_case
"/home/project/"
"/home/project/src/"
(Some "src/")
let%test "it handles directory traversals" =
relative_to_test_case
"/home/project"
"/home/project/src/../lib/"
(Some "lib/")
let%test "it fails to make disjoint paths relative to one another" =
relative_to_test_case
"/home/project"
"/home/main.mo"
None
let%test "it handles relative paths" =
relative_to_test_case
"project/src"
"project/src/Main.mo"
(Some "Main.mo")
end