1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
(*
This module is the backend of the Motoko compiler. It takes a program in
the intermediate representation (ir.ml), and produces a WebAssembly module,
with Internet Computer extensions (customModule.ml). An important helper module is
instrList.ml, which provides a more convenient way of assembling WebAssembly
instruction lists, as it takes care of (1) source locations and (2) labels.
This file is split up in a number of modules, purely for namespacing and
grouping. Every module has a high-level prose comment explaining the concept;
this keeps documentation close to the code (a lesson learned from Simon PJ).
*)
open Ir_def
open Mo_values
open Mo_types
open Mo_config
open Wasm_exts.Ast
open Wasm_exts.Types
open Source
(* Re-shadow Source.(@@), to get Stdlib.(@@) *)
let (@@) = Stdlib.(@@)
module G = InstrList
let (^^) = G.(^^) (* is this how we import a single operator from a module that we otherwise use qualified? *)
(* WebAssembly pages are 64kb. *)
let page_size = Int64.of_int (64 * 1024)
let page_size_bits = 16
(* Our code depends on OCaml int having at least 32 bits *)
let _ = assert (Sys.int_size >= 32)
(* Scalar Tagging Scheme *)
(* Rationale:
Scalar tags are variable length LSBs.
A tag (in binary) is either
* 10 for Int (leaving 30 bits payload)
* 01(0+)0 for unsigned, e.g 0100 for Nat64
* 11(0+)0 for signed, e.g.1100 for Int64
Types must be distinguished by tag.
LSB must always be 0.
Decoding the type of scalar is easy using `ctz` to count the trailing zeros, then
switching on the MSB of the tag for sign (if any).
We use the *longest* tag that accommodates the required payload bits, to allow room
for any future tags that may require more payload bits,
e.g. 01(0^14) for Nat8, 11(0^14) for Int8
01(0^30) is used for the unit tag (the payload is a trivial zero-length bit string).
*)
module TaggingScheme = struct
(*
Enable for development only to sanity check value tags and
locate unexpected tag errors to compile.ml source lines.
Flags.sanity_check will check tags, but not further locate them.
*)
let debug = false (* should never be true in master! *)
type bit = I | O
let _ = (I,O) (* silence warning on unused constructors *)
type _tag =
TBool
| TRef
| TNum
| TNat64 | TInt64
| TNat32 | TInt32
| TChar
| TNat8 | TInt8
| TNat16 | TInt16
| TUnit
| TUnused
(* Leverage OCaml pattern match compilation to check tagging scheme is injective *)
(* OCaml generates stack overflow for _decode:
let _decode u64 =
match u64 with
| ((O,O,O,O,O,O,O,O), (O,O,O,O,O,O,O,O), (O,O,O,O,O,O,O,O), (O,O,O,O,O,O,O,O), (O,O,O,O,O,O,O,O), (O,O,O,O,O,O,O,O), (O,O,O,O,O,O,O,O), (O,O,O,O,O,O,O,O)) -> TBool (* false *)
| ((O,O,O,O,O,O,O,O), (O,O,O,O,O,O,O,O), (O,O,O,O,O,O,O,O), (O,O,O,O,O,O,O,O), (O,O,O,O,O,O,O,O), (O,O,O,O,O,O,O,O), (O,O,O,O,O,O,O,O), (O,O,O,O,O,O,O,I)) -> TBool (* true *)
| ((_,_,_,_,_,_,_,_), (_,_,_,_,_,_,_,_), (_,_,_,_,_,_,_,_), (_,_,_,_,_,_,_,_), (_,_,_,_,_,_,_,_), (_,_,_,_,_,_,_,_), (_,_,_,_,_,_,_,_), (_,_,_,_,_,_,I,I)) -> TRef (* 62 bit *)
| ((_,_,_,_,_,_,_,_), (_,_,_,_,_,_,_,_), (_,_,_,_,_,_,_,_), (_,_,_,_,_,_,_,_), (_,_,_,_,_,_,_,_), (_,_,_,_,_,_,_,_), (_,_,_,_,_,_,_,_), (_,_,_,_,_,_,I,O)) -> TNum (* 62 bit *)
| ((_,_,_,_,_,_,_,_), (_,_,_,_,_,_,_,_), (_,_,_,_,_,_,_,_), (_,_,_,_,_,_,_,_), (_,_,_,_,_,_,_,_), (_,_,_,_,_,_,_,_), (_,_,_,_,_,_,_,_), (_,_,_,_,O,I,O,O)) -> TNat64 (* 60 bit *)
| ((_,_,_,_,_,_,_,_), (_,_,_,_,_,_,_,_), (_,_,_,_,_,_,_,_), (_,_,_,_,_,_,_,_), (_,_,_,_,_,_,_,_), (_,_,_,_,_,_,_,_), (_,_,_,_,_,_,_,_), (_,_,_,_,I,I,O,O)) -> TInt64
| ((_,_,_,_,_,_,_,_), (_,_,_,_,_,_,_,_), (_,_,_,_,_,_,_,_), (_,_,_,_,_,_,_,_), (O,I,O,O,O,O,O,O), (O,O,O,O,O,O,O,O), (O,O,O,O,O,O,O,O), (O,O,O,O,O,O,O,O)) -> TNat32
| ((_,_,_,_,_,_,_,_), (_,_,_,_,_,_,_,_), (_,_,_,_,_,_,_,_), (_,_,_,_,_,_,_,_), (I,I,O,O,O,O,O,O), (O,O,O,O,O,O,O,O), (O,O,O,O,O,O,O,O), (O,O,O,O,O,O,O,O)) -> TInt32
| ((_,_,_,_,_,_,_,_), (_,_,_,_,_,_,_,_), (_,_,_,_,_,O,I,O), (O,O,O,O,O,O,O,O), (O,O,O,O,O,O,O,O), (O,O,O,O,O,O,O,O), (O,O,O,O,O,O,O,O), (O,O,O,O,O,O,O,O)) -> TChar
| ((_,_,_,_,_,_,_,_), (_,_,_,_,_,_,_,_), (O,I,O,O,O,O,O,O), (O,O,O,O,O,O,O,O), (O,O,O,O,O,O,O,O), (O,O,O,O,O,O,O,O), (O,O,O,O,O,O,O,O), (O,O,O,O,O,O,O,O)) -> TNat16
| ((_,_,_,_,_,_,_,_), (_,_,_,_,_,_,_,_), (I,I,O,O,O,O,O,O), (O,O,O,O,O,O,O,O), (O,O,O,O,O,O,O,O), (O,O,O,O,O,O,O,O), (O,O,O,O,O,O,O,O), (O,O,O,O,O,O,O,O)) -> TInt16
| ((_,_,_,_,_,_,_,_), (O,I,O,O,O,O,O,O), (O,O,O,O,O,O,O,O), (O,O,O,O,O,O,O,O), (O,O,O,O,O,O,O,O), (O,O,O,O,O,O,O,O), (O,O,O,O,O,O,O,O), (O,O,O,O,O,O,O,O)) -> TNat8
| ((_,_,_,_,_,_,_,_), (I,I,O,O,O,O,O,O), (O,O,O,O,O,O,O,O), (O,O,O,O,O,O,O,O), (O,O,O,O,O,O,O,O), (O,O,O,O,O,O,O,O), (O,O,O,O,O,O,O,O), (O,O,O,O,O,O,O,O)) -> TInt8
| ((O,I,O,O,O,O,O,O), (O,O,O,O,O,O,O,O), (O,O,O,O,O,O,O,O), (O,O,O,O,O,O,O,O), (O,O,O,O,O,O,O,O), (O,O,O,O,O,O,O,O), (O,O,O,O,O,O,O,O), (O,O,O,O,O,O,O,O)) -> TUnit
| _ -> TUnused
*)
let tag_of_typ pty = Type.(
if !Flags.rtti then
match pty with
| Nat
| Int -> 0b10L
| Nat64 -> 0b0100L
| Int64 -> 0b1100L
| Nat32 -> 0b01000000_00000000_00000000_00000000L
| Int32 -> 0b11000000_00000000_00000000_00000000L
| Char -> 0b010_00000000_00000000_00000000_00000000_00000000L
| Nat16 -> 0b01000000_00000000_00000000_00000000_00000000_00000000L
| Int16 -> 0b11000000_00000000_00000000_00000000_00000000_00000000L
| Nat8 -> 0b01000000_00000000_00000000_00000000_00000000_00000000_00000000L
| Int8 -> 0b11000000_00000000_00000000_00000000_00000000_00000000_00000000L
| _ -> assert false
else
(* no tag *)
match pty with
| Nat
| Int
| Nat64
| Int64
| Nat32
| Int32
| Char
| Nat16
| Int16
| Nat8
| Int8 -> 0L
| _ -> assert false)
let unit_tag =
if !Flags.rtti then
(* all tag, no payload (none needed) *)
0b01000000_00000000_00000000_00000000_00000000_00000000_00000000_00000000L
else
(* no tag *)
0L
(* Number of payload bits in compact representation, including any sign *)
let ubits_of pty = Type.(
if !Flags.rtti then
match pty with
| Nat | Int -> 62
| Nat64 | Int64 -> 60
| Nat32 | Int32 -> 32
| Char -> 21 (* suffices for 21-bit UTF8 codepoints *)
| Nat16 | Int16 -> 16
| Nat8 | Int8 -> 8
| _ -> assert false
else
match pty with
| Nat | Int -> 63
| Nat64 | Int64 -> 63
| Nat32 | Int32 -> 32
| Char -> 21 (* suffices for 21-bit UTF8 codepoints *)
| Nat16 | Int16 -> 16
| Nat8 | Int8 -> 8
| _ -> assert false)
end
(*
Pointers are skewed (translated) -1 relative to the actual offset.
See documentation of module BitTagged for more detail.
*)
let ptr_skew = -1L
let ptr_unskew = 1L
(* Generating function names for functions parametrized by prim types *)
let prim_fun_name p stem = Printf.sprintf "%s<%s>" stem (Type.string_of_prim p)
(* Helper functions to produce annotated terms (Wasm.AST) *)
let nr x = Wasm.Source.{ it = x; at = no_region }
let todo fn se x = Printf.eprintf "%s: %s" fn (Wasm.Sexpr.to_string 80 se); x
exception CodegenError of string
let fatal fmt = Printf.ksprintf (fun s -> raise (CodegenError s)) fmt
module StaticBytes = struct
(* A very simple DSL to describe static memory *)
type t_ =
| I32 of int32
| I64 of int64
| Seq of t
| Bytes of string
and t = t_ list
let i64s is = Seq (List.map (fun i -> I64 i) is)
let rec add : Buffer.t -> t_ -> unit = fun buf -> function
| I32 i -> Buffer.add_int32_le buf i
| I64 i -> Buffer.add_int64_le buf i
| Seq xs -> List.iter (add buf) xs
| Bytes b -> Buffer.add_string buf b
let as_bytes : t -> string = fun xs ->
let buf = Buffer.create 32 in
List.iter (add buf) xs;
Buffer.contents buf
let as_words static_bytes =
let rec convert_to_words binary index =
assert (index <= (Bytes.length binary));
if (Bytes.length binary) = index then
[]
else
let number = Bytes.get_int64_le binary index in
let next_index = Int.add index 8 in
[number] @ (convert_to_words binary next_index)
in
convert_to_words (Bytes.of_string (as_bytes static_bytes)) 0
end (* StaticBytes *)
module Const = struct
(* Literals, as used in constant values. This is a projection of Ir.Lit,
combining cases whose details we no longer care about.
Should be still precise enough to map to the cases supported by SR.t.
In other words: It is the smallest type that allows these three functions:
(* projection of Ir.list. NB: pure, no access to env *)
const_lit_of_lit : Ir.lit -> Const.lit (* NB: pure, no access to env *)
(* creates vanilla representation (e.g. to put in static data structures *)
vanilla_lit : E.env -> Const.lit -> i64
(* creates efficient stack representation *)
compile_lit : E.env -> Const.lit -> (SR.t, code)
*)
type lit =
| Vanilla of int64 (* small words, no static data, already in vanilla format *)
| BigInt of Big_int.big_int
| Bool of bool
| Word64 of Type.prim * int64
| Float64 of Numerics.Float.t
| Text of string
| Blob of string
| Null
let lit_eq l1 l2 = match l1, l2 with
| Vanilla i, Vanilla j -> i = j
| BigInt i, BigInt j -> Big_int.eq_big_int i j
| Word64 (tyi, i), Word64 (tyj, j) -> tyi = tyj && i = j
| Float64 i, Float64 j -> i = j
| Bool i, Bool j -> i = j
| Text s, Text t
| Blob s, Blob t -> s = t
| Null, Null -> true
| _ -> false
(* Inlineable functions
The prelude/prim.mo is full of functions simply wrapping a prim, e.g.
func int64ToNat64(n : Int64) : Nat64 = (prim "num_wrap_Int64_Nat64" : Int64 -> Nat64) n;
generating a Wasm function for them and calling them is absurdly expensive
when the prim is just a simple Wasm instruction. Also, it requires boxing
and unboxing arguments and results.
So we recognize such functions when creating the `const` summary, and use the prim
directly when calling such function.
Can be extended to cover more forms of inlineable functions.
*)
type fun_rhs =
| Complicated (* no inlining possible *)
| PrimWrapper of Ir.prim
(* Constant known values.
These are values that
* are completely known constantly
* do not require Wasm code to be executed (e.g. in `start`)
* can be used directly (e.g. Call, not CallIndirect)
* can be turned into Vanilla heap data on demand
See ir_passes/const.ml for what precisely we can compile as const now.
*)
type v =
| Fun of int32 * (unit -> int32) * fun_rhs (* function pointer calculated upon first use *)
| Message of int32 (* anonymous message, only temporary *)
| Obj of (string * v) list
| Unit
| Array of v list (* immutable arrays *)
| Tuple of v list (* non-nullary tuples *)
| Tag of (string * v)
| Opt of v
| Lit of lit
let rec eq v1 v2 = match v1, v2 with
| Fun (id1, _, _), Fun (id2, _, _) -> id1 = id2
| Message fi1, Message fi2 -> fi1 = fi2
| Obj fields1, Obj fields2 ->
let equal_fields (name1, field_value1) (name2, field_value2) = (name1 = name2) && (eq field_value1 field_value2) in
List.for_all2 equal_fields fields1 fields2
| Unit, Unit -> true
| Array elements1, Array elements2 ->
List.for_all2 eq elements1 elements2
| Tuple elements1, Tuple elements2 ->
List.for_all2 eq elements1 elements2
| Tag (name1, tag_value1), Tag (name2, tag_value2) ->
(name1 = name2) && (eq tag_value1 tag_value2)
| Opt opt_value1, Opt opt_value2 -> eq opt_value1 opt_value2
| Lit l1, Lit l2 -> lit_eq l1 l2
| Fun _, _ | Message _, _ | Obj _, _ | Unit, _
| Array _, _ | Tuple _, _ | Tag _, _ | Opt _, _
| Lit _, _ -> false
end (* Const *)
module SR = struct
(* This goes with the StackRep module, but we need the types earlier *)
(* Value representation on the stack:
Compiling an expression means putting its value on the stack. But
there are various ways of putting a value onto the stack -- unboxed,
tupled etc.
*)
type t =
| Vanilla
| UnboxedTuple of int
| UnboxedWord64 of Type.prim
| UnboxedFloat64
| Unreachable
| Const of Const.v
let unit = UnboxedTuple 0
let bool = Vanilla
(* Because t contains Const.t, and that contains Const.v, and that contains
Const.lit, and that contains Big_int, we cannot just use normal `=`. So we
have to write our own equality.
*)
let eq (t1 : t) (t2 : t) = match t1, t2 with
| Const c1, Const c2 -> Const.eq c1 c2
| _ -> t1 = t2
let to_var_type : t -> value_type = function
| Vanilla -> I64Type
| UnboxedWord64 _ -> I64Type
| UnboxedFloat64 -> F64Type
| UnboxedTuple n -> fatal "to_var_type: UnboxedTuple"
| Const _ -> fatal "to_var_type: Const"
| Unreachable -> fatal "to_var_type: Unreachable"
end (* SR *)
(*
** The compiler environment.
Of course, as we go through the code we have to track a few things; these are
put in the compiler environment, type `E.t`. Some fields are valid globally, some
only make sense locally, i.e. within a single function (but we still put them
in one big record, for convenience).
The fields fall into the following categories:
1. Static global fields. Never change.
Example: whether we are compiling with -no-system-api
2. Mutable global fields. Change only monotonically.
These are used to register things like functions. This should be monotone
in the sense that entries are only added, and that the order should not
matter in a significant way. In some instances, the list contains futures
so that we can reserve and know the _position_ of the thing before we have
to actually fill it in.
3. Static local fields. Never change within a function.
Example: number of parameters and return values
4. Mutable local fields. See above
Example: Name and type of locals.
**)
(* Before we can define the environment, we need some auxillary types *)
module E = struct
(* Utilities, internal to E *)
let reg (ref : 'a list ref) (x : 'a) : int32 =
let i = Wasm.I32.of_int_u (List.length !ref) in
ref := !ref @ [ x ];
i
let reserve_promise (ref : 'a Lib.Promise.t list ref) _s : (int32 * ('a -> unit)) =
let p = Lib.Promise.make () in (* For debugging with named promises, use s here *)
let i = Wasm.I32.of_int_u (List.length !ref) in
ref := !ref @ [ p ];
(i, Lib.Promise.fulfill p)
(* The environment type *)
module NameEnv = Env.Make(String)
module StringEnv = Env.Make(String)
module LabSet = Set.Make(String)
module FeatureSet = Set.Make(String)
module FunEnv = Env.Make(Int32)
type local_names = (int32 * string) list (* For the debug section: Names of locals *)
type func_with_names = func * local_names
type lazy_function = (int32, func_with_names) Lib.AllocOnUse.t
type type_descriptor = {
candid_data_segment : int32;
type_offsets_segment : int32;
idl_types_segment : int32;
}
(* Object allocation code. *)
type object_allocation = t -> G.t
(* Pool of shared objects.
Alllocated in the dynamic heap on program initialization/upgrade.
Identified by the index position in this list and accessed via the runtime system.
Registered as GC root set and replaced on program upgrade.
*)
and object_pool = {
objects: object_allocation list ref;
frozen: bool ref;
}
and t = {
(* Global fields *)
(* Static *)
mode : Flags.compile_mode;
rts : Wasm_exts.CustomModule.extended_module option; (* The rts. Re-used when compiling actors *)
trap_with : t -> string -> G.t;
(* Trap with message; in the env for dependency injection *)
(* Per module fields (only valid/used inside a module) *)
(* Immutable *)
(* Mutable *)
func_types : func_type list ref;
func_imports : import list ref;
other_imports : import list ref;
exports : export list ref;
funcs : (func * string * local_names) Lib.Promise.t list ref;
func_ptrs : int32 FunEnv.t ref;
end_of_table : int32 ref;
globals : (global Lib.Promise.t * string) list ref;
global_names : int32 NameEnv.t ref;
named_imports : int32 NameEnv.t ref;
built_in_funcs : lazy_function NameEnv.t ref;
static_strings : int32 StringEnv.t ref;
data_segments : string list ref; (* Passive data segments *)
object_pool : object_pool;
(* Types accumulated in global typtbl (for candid subtype checks)
See Note [Candid subtype checks]
*)
typtbl_typs : Type.typ list ref;
(* Metadata *)
args : (bool * string) option ref;
service : (bool * string) option ref;
stable_types : (bool * string) option ref;
labs : LabSet.t ref; (* Used labels (fields and variants),
collected for Motoko custom section 0 *)
(* Local fields (only valid/used inside a function) *)
(* Static *)
n_param : int32; (* Number of parameters (to calculate indices of locals) *)
return_arity : int; (* Number of return values (for type of Return) *)
(* Mutable *)
locals : value_type list ref; (* Types of locals *)
local_names : (int32 * string) list ref; (* Names of locals *)
features : FeatureSet.t ref; (* Wasm features using wasmtime naming *)
(* requires stable memory (and emulation on wasm targets) *)
requires_stable_memory : bool ref;
(* Type descriptor of current program version, created on `conclude_module`. *)
global_type_descriptor : type_descriptor option ref;
(* Counter for deriving a unique id per constant function. *)
constant_functions : int32 ref;
}
(* Compile-time-known value, either a plain vanilla constant or a shared object. *)
type shared_value =
| Vanilla of int64
| SharedObject of int64 (* index in object pool *)
(* The initial global environment *)
let mk_global mode rts trap_with : t = {
mode;
rts;
trap_with;
func_types = ref [];
func_imports = ref [];
other_imports = ref [];
exports = ref [];
funcs = ref [];
func_ptrs = ref FunEnv.empty;
end_of_table = ref 0l;
globals = ref [];
global_names = ref NameEnv.empty;
named_imports = ref NameEnv.empty;
built_in_funcs = ref NameEnv.empty;
static_strings = ref StringEnv.empty;
data_segments = ref [];
object_pool = { objects = ref []; frozen = ref false };
typtbl_typs = ref [];
(* Metadata *)
args = ref None;
service = ref None;
stable_types = ref None;
labs = ref LabSet.empty;
(* Actually unused outside mk_fun_env: *)
n_param = 0l;
return_arity = 0;
locals = ref [];
local_names = ref [];
features = ref FeatureSet.empty;
requires_stable_memory = ref false;
global_type_descriptor = ref None;
constant_functions = ref 0l;
}
(* This wraps Mo_types.Hash.hash to also record which labels we have seen,
so that that data can be put in a custom section, useful for debugging.
Thus Mo_types.Hash.hash should not be called directly!
*)
let hash (env : t) lab =
env.labs := LabSet.add lab (!(env.labs));
Wasm.I64_convert.extend_i32_u (Mo_types.Hash.hash lab)
let get_labs env = LabSet.elements (!(env.labs))
let mk_fun_env env n_param return_arity =
{ env with
n_param;
return_arity;
locals = ref [];
local_names = ref [];
}
(* We avoid accessing the fields of t directly from outside of E, so here are a
bunch of accessors. *)
let mode (env : t) = env.mode
let add_anon_local (env : t) ty =
let i = reg env.locals ty in
Wasm.I32.add env.n_param i
let add_local_name (env : t) li name =
let _ = reg env.local_names (li, name) in ()
let get_locals (env : t) = !(env.locals)
let get_local_names (env : t) : (int32 * string) list = !(env.local_names)
let _add_other_import (env : t) m =
ignore (reg env.other_imports m)
let add_export (env : t) e =
ignore (reg env.exports e)
let add_global (env : t) name g =
assert (not (NameEnv.mem name !(env.global_names)));
let gi = reg env.globals (g, name) in
env.global_names := NameEnv.add name gi !(env.global_names)
let add_global64_delayed (env : t) name mut : int64 -> unit =
let p = Lib.Promise.make () in
add_global env name p;
(fun init ->
Lib.Promise.fulfill p (nr {
gtype = GlobalType (I64Type, mut);
value = nr (G.to_instr_list (G.i (Const (nr (Wasm_exts.Values.I64 init)))))
})
)
let add_global64 (env : t) name mut init =
add_global64_delayed env name mut init
let get_global (env : t) name : int32 =
match NameEnv.find_opt name !(env.global_names) with
| Some gi -> gi
| None -> raise (Invalid_argument (Printf.sprintf "No global named %s declared" name))
let get_global64_lazy (env : t) name mut init : int32 =
match NameEnv.find_opt name !(env.global_names) with
| Some gi -> gi
| None -> add_global64 env name mut init; get_global env name
let export_global env name =
add_export env (nr {
name = Lib.Utf8.decode name;
edesc = nr (GlobalExport (nr (get_global env name)))
})
let get_globals (env : t) = List.map (fun (g,n) -> Lib.Promise.value g) !(env.globals)
let reserve_fun (env : t) name =
let (j, fill) = reserve_promise env.funcs name in
let n = Int32.of_int (List.length !(env.func_imports)) in
let fi = Int32.add j n in
let fill_ (f, local_names) = fill (f, name, local_names) in
(fi, fill_)
let add_fun (env : t) name (f, local_names) =
let (fi, fill) = reserve_fun env name in
fill (f, local_names);
fi
let make_lazy_function env name : lazy_function =
Lib.AllocOnUse.make (fun () -> reserve_fun env name)
let get_constant_function_id (env : t) : int32 =
let id = !(env.constant_functions) in
env.constant_functions := (Int32.add id 1l);
id
let lookup_built_in (env : t) name : lazy_function =
match NameEnv.find_opt name !(env.built_in_funcs) with
| None ->
let lf = make_lazy_function env name in
env.built_in_funcs := NameEnv.add name lf !(env.built_in_funcs);
lf
| Some lf -> lf
let built_in (env : t) name : int32 =
Lib.AllocOnUse.use (lookup_built_in env name)
let define_built_in (env : t) name mk_fun : unit =
Lib.AllocOnUse.def (lookup_built_in env name) mk_fun
let get_return_arity (env : t) = env.return_arity
let get_func_imports (env : t) = !(env.func_imports)
let get_other_imports (env : t) = !(env.other_imports)
let get_exports (env : t) = !(env.exports)
let get_funcs (env : t) = List.map Lib.Promise.value !(env.funcs)
let func_type (env : t) ty =
let rec go i = function
| [] -> env.func_types := !(env.func_types) @ [ ty ]; Int32.of_int i
| ty'::tys when ty = ty' -> Int32.of_int i
| _ :: tys -> go (i+1) tys
in
go 0 !(env.func_types)
let get_types (env : t) = !(env.func_types)
let add_func_import (env : t) modname funcname arg_tys ret_tys =
if !(env.funcs) <> [] then
raise (CodegenError "Add all imports before all functions!");
let i = {
module_name = Lib.Utf8.decode modname;
item_name = Lib.Utf8.decode funcname;
idesc = nr (FuncImport (nr (func_type env (FuncType (arg_tys, ret_tys)))))
} in
let fi = reg env.func_imports (nr i) in
let name = modname ^ "." ^ funcname in
assert (not (NameEnv.mem name !(env.named_imports)));
env.named_imports := NameEnv.add name fi !(env.named_imports)
let call_import (env : t) modname funcname =
let name = modname ^ "." ^ funcname in
match NameEnv.find_opt name !(env.named_imports) with
| Some fi -> G.i (Call (nr fi))
| _ ->
raise (Invalid_argument (Printf.sprintf "Function import not declared: %s\n" name))
let reuse_import (env : t) modname funcname =
let name = modname ^ "." ^ funcname in
match NameEnv.find_opt name !(env.named_imports) with
| Some fi -> fi
| _ ->
raise (Invalid_argument (Printf.sprintf "Function import not declared: %s\n" name))
let get_rts (env : t) = env.rts
let as_block_type env : stack_type -> block_type = function
| [] -> ValBlockType None
| [t] -> ValBlockType (Some t)
| ts -> VarBlockType (nr (func_type env (FuncType ([], ts))))
let prepare_branch_condition =
G.i (Convert (Wasm_exts.Values.I32 I32Op.WrapI64))
let if0 then_block else_block =
prepare_branch_condition ^^
G.if0 then_block else_block
let if1 return_type then_block else_block =
prepare_branch_condition ^^
G.if1 return_type then_block else_block
let if_ env tys thn els = prepare_branch_condition ^^ G.if_ (as_block_type env tys) thn els
let block_ env tys bdy = G.block_ (as_block_type env tys) bdy
let trap_with env msg = env.trap_with env msg
let then_trap_with env msg = if0 (trap_with env msg) G.nop
let else_trap_with env msg = if0 G.nop (trap_with env msg)
let add_data_segment (env : t) data : int32 =
let index = List.length !(env.data_segments) in
env.data_segments := !(env.data_segments) @ [ data ];
Int32.of_int index
let add_fun_ptr (env : t) fi : int32 =
match FunEnv.find_opt fi !(env.func_ptrs) with
| Some fp -> fp
| None ->
let fp = !(env.end_of_table) in
env.func_ptrs := FunEnv.add fi fp !(env.func_ptrs);
env.end_of_table := Int32.add !(env.end_of_table) 1l;
fp
let get_elems env =
FunEnv.bindings !(env.func_ptrs)
let get_end_of_table env : int32 =
!(env.end_of_table)
let add_static (env : t) (data : StaticBytes.t) : int32 =
let b = StaticBytes.as_bytes data in
match StringEnv.find_opt b !(env.static_strings) with
| Some segment_index -> segment_index
| None ->
let segment_index = add_data_segment env b in
env.static_strings := StringEnv.add b segment_index !(env.static_strings);
segment_index
let replace_data_segment (env : t) (segment_index : int32) (data : StaticBytes.t) : int64 =
let new_value = StaticBytes.as_bytes data in
let segment_index = Int32.to_int segment_index in
assert (segment_index < List.length !(env.data_segments));
env.data_segments := List.mapi (fun index old_value ->
if index = segment_index then
(assert (old_value = "");
new_value)
else
old_value
) !(env.data_segments);
Int64.of_int (String.length new_value)
let get_data_segments (env : t) =
!(env.data_segments)
let object_pool_add (env : t) (allocation : t -> G.t) : int64 =
if !(env.object_pool.frozen) then raise (Invalid_argument "Object pool frozen");
let index = List.length !(env.object_pool.objects) in
env.object_pool.objects := !(env.object_pool.objects) @ [ allocation ];
Int64.of_int index
let object_pool_size (env : t) : int =
List.length !(env.object_pool.objects)
let iterate_object_pool (env : t) f =
G.concat_mapi f !(env.object_pool.objects)
let collect_garbage env force =
let name = "incremental_gc" in
let gc_fn = if force || !Flags.force_gc then name else "schedule_" ^ name in
call_import env "rts" gc_fn
(* See Note [Candid subtype checks] *)
(* NB: we don't bother detecting duplicate registrations here because the code sharing machinery
ensures that `add_typtbl_typ t` is called at most once for any `t` with a distinct type hash *)
let add_typtbl_typ (env : t) ty : Int32.t =
reg env.typtbl_typs ty
let get_typtbl_typs (env : t) : Type.typ list =
!(env.typtbl_typs)
let add_feature (env : t) f =
env.features := FeatureSet.add f (!(env.features))
let get_features (env : t) = FeatureSet.elements (!(env.features))
let require_stable_memory (env : t) =
if not !(env.requires_stable_memory)
then
(env.requires_stable_memory := true;
match mode env with
| Flags.ICMode | Flags.RefMode ->
()
| Flags.WASIMode | Flags.WasmMode ->
add_feature env "bulk-memory";
add_feature env "multi-memory")
let requires_stable_memory (env : t) =
!(env.requires_stable_memory)
let get_memories (env : t) initial_memory_pages =
nr {mtype = MemoryType ({min = initial_memory_pages; max = None}, I64IndexType)}
::
match mode env with
| Flags.WASIMode | Flags.WasmMode when !(env.requires_stable_memory) ->
[ nr {mtype = MemoryType ({min = Int64.zero; max = None}, I64IndexType)} ]
| _ -> []
end
(* General code generation functions:
Rule of thumb: Here goes stuff that independent of the Motoko AST.
*)
(* Function called compile_* return a list of instructions (and maybe other stuff) *)
let compile_comparison rel =
G.i (Compare (Wasm_exts.Values.I64 rel)) ^^
G.i (Convert (Wasm_exts.Values.I64 I64Op.ExtendUI32))
let compile_comparison_32 rel =
G.i (Compare (Wasm_exts.Values.I32 rel)) ^^
G.i (Convert (Wasm_exts.Values.I64 I64Op.ExtendUI32))
let compile_test op =
G.i (Test (Wasm_exts.Values.I64 op)) ^^
G.i (Convert (Wasm_exts.Values.I64 I64Op.ExtendUI32))
let compile_comparison_f64 rel =
G.i (Compare (Wasm_exts.Values.F64 rel)) ^^
G.i (Convert (Wasm_exts.Values.I64 I64Op.ExtendUI32))
let compile_unboxed_const i = G.i (Const (nr (Wasm_exts.Values.I64 i)))
let compile_const_32 i = G.i (Const (nr (Wasm_exts.Values.I32 i)))
let compile_unboxed_zero = compile_unboxed_const 0L
let compile_unboxed_one = compile_unboxed_const 1L
(* Some common arithmetic, used for pointer and index arithmetic *)
let compile_op_const op i =
compile_unboxed_const i ^^
G.i (Binary (Wasm_exts.Values.I64 op))
let compile_add_const = compile_op_const I64Op.Add
let compile_sub_const = compile_op_const I64Op.Sub
let compile_mul_const = compile_op_const I64Op.Mul
let compile_divU_const = compile_op_const I64Op.DivU
let compile_shrU_const = compile_op_const I64Op.ShrU
let compile_shrS_const = compile_op_const I64Op.ShrS
let compile_shl_const = compile_op_const I64Op.Shl
let compile_rotl_const = compile_op_const I64Op.Rotl
let compile_rotr_const = compile_op_const I64Op.Rotr
let compile_bitand_const = compile_op_const I64Op.And
let compile_bitor_const = function
| 0L -> G.nop | n -> compile_op_const I64Op.Or n
let compile_xor_const = function
| 0L -> G.nop | n -> compile_op_const I64Op.Xor n
let compile_rel_const rel i =
compile_unboxed_const i ^^
compile_comparison rel
let compile_eq_const = function
| 0L -> compile_test I64Op.Eqz
| i -> compile_rel_const I64Op.Eq i
let compile_op32_const op i =
compile_const_32 i ^^
G.i (Binary (Wasm_exts.Values.I32 op))
let compile_add32_const = compile_op32_const I32Op.Add
let _compile_sub32_const = compile_op32_const I32Op.Sub
let _compile_mul32_const = compile_op32_const I32Op.Mul
let _compile_divU32_const = compile_op32_const I32Op.DivU
let _compile_shrU32_const = function
| 0l -> G.nop | n -> compile_op32_const I32Op.ShrU n
let _compile_shrS32_const = function
| 0l -> G.nop | n -> compile_op32_const I32Op.ShrS n
let _compile_shl32_const = function
| 0l -> G.nop | n -> compile_op32_const I32Op.Shl n
let compile_eq32_const i =
compile_const_32 i ^^
compile_comparison_32 I32Op.Eq
(* Analogous to Lib.Uint32.compare *)
let compare_uint64 i1 i2 =
if i1 < 0L && i2 >= 0L then 1
else if i1 >= 0L && i2 < 0L then -1
else Int64.compare i1 i2
(* A common variant of todo *)
let todo_trap env fn se = todo fn se (E.trap_with env ("TODO: " ^ fn))
let _todo_trap_SR env fn se = todo fn se (SR.Unreachable, E.trap_with env ("TODO: " ^ fn))
(* Locals *)
let new_local_ env t name =
let i = E.add_anon_local env t in
E.add_local_name env i name;
( G.i (LocalSet (nr i))
, G.i (LocalGet (nr i))
, i
)
let new_local env name =
let (set_i, get_i, _) = new_local_ env I64Type name
in (set_i, get_i)
let new_local32 env name =
let (set_i, get_i, _) = new_local_ env I32Type name
in (set_i, get_i)
(* Some common code macros *)
(* Iterates while cond is true. *)
let compile_while env cond body =
G.loop0 (
cond ^^ E.if0 (body ^^ G.i (Br (nr 1l))) G.nop
)
(* Expects a number n on the stack. Iterates from m to below that number. *)
let from_m_to_n env m mk_body =
let (set_n, get_n) = new_local env "n" in
let (set_i, get_i) = new_local env "i" in
set_n ^^
compile_unboxed_const m ^^
set_i ^^
compile_while env
( get_i ^^
get_n ^^
compile_comparison I64Op.LtU
) (
mk_body get_i ^^
get_i ^^
compile_add_const 1L ^^
set_i
)
(* Expects a number on the stack. Iterates from zero to below that number. *)
let from_0_to_n env mk_body = from_m_to_n env 0L mk_body
(* Pointer reference and dereference *)
let load_unskewed_ptr : G.t =
G.i (Load {ty = I64Type; align = 3; offset = 0L; sz = None})
let store_unskewed_ptr : G.t =
G.i (Store {ty = I64Type; align = 3; offset = 0L; sz = None})
let load_ptr : G.t =
G.i (Load {ty = I64Type; align = 3; offset = ptr_unskew; sz = None})
let store_ptr : G.t =
G.i (Store {ty = I64Type; align = 3; offset = ptr_unskew; sz = None})
let narrow_to_32 env get_value =
get_value ^^
compile_unboxed_const 0xffff_ffffL ^^
compile_comparison I64Op.LeU ^^
E.else_trap_with env "cannot narrow to 32 bit" ^^ (* Note: If narrow fails during print, the trap print leads to an infinite recursion and a stack overflow *)
get_value ^^
G.i (Convert (Wasm_exts.Values.I32 I32Op.WrapI64))
module FakeMultiVal = struct
(* For some use-cases (e.g. processing the compiler output with analysis
tools) it is useful to avoid the multi-value extension.
This module provides mostly transparent wrappers that put multiple values
in statically allocated globals and pull them off again.
So far only does I64Type (but that could be changed).
If the multi_value flag is on, these do not do anything.
*)
let ty tys =
if !Flags.multi_value || List.length tys <= 1
then tys
else []
let global env i =
E.get_global64_lazy env (Printf.sprintf "multi_val_%d" i) Mutable 0L
let store env tys =
if !Flags.multi_value || List.length tys <= 1 then G.nop else
G.concat_mapi (fun i ty ->
assert(ty = I64Type);
G.i (GlobalSet (nr (global env i)))
) tys
let load env tys =
if !Flags.multi_value || List.length tys <= 1 then G.nop else
let n = List.length tys - 1 in
G.concat_mapi (fun i ty ->
assert(ty = I64Type);
G.i (GlobalGet (nr (global env (n - i))))
) tys
(* A drop-in replacement for E.if_ *)
let if_ env bt thn els =
E.if_ env (ty bt) (thn ^^ store env bt) (els ^^ store env bt) ^^
load env bt
(* A block that can be exited from *)
let block_ env bt body =
E.block_ env (ty bt) (G.with_current_depth (fun depth ->
body (store env bt ^^ G.branch_to_ depth)
)) ^^
load env bt
end (* FakeMultiVal *)
module Func = struct
(* This module contains basic bookkeeping functionality to define functions,
in particular creating the environment, and finally adding it to the environment.
*)
let of_body env params retty mk_body =
let env1 = E.mk_fun_env env (Int32.of_int (List.length params)) (List.length retty) in
List.iteri (fun i (n,_t) -> E.add_local_name env1 (Int32.of_int i) n) params;
let ty = FuncType (List.map snd params, FakeMultiVal.ty retty) in
let body = G.to_instr_list (
mk_body env1 ^^ FakeMultiVal.store env1 retty
) in
(nr { ftype = nr (E.func_type env ty);
locals = E.get_locals env1;
body }
, E.get_local_names env1)
let define_built_in env name params retty mk_body =
E.define_built_in env name (lazy (of_body env params retty mk_body))
type sharing =
Always (* i.e. never inline *)
| Never (* i.e. always inline *)
(* (Almost) transparently lift code into a function and call this function,
unless sharing = Never and not (!Flags.share_code) in which case the code
is inlined.
NB: inlined code must not be recursive nor `return`.
*)
(* Also add a hack to support multiple return values *)
let share_code sharing env name params retty mk_body =
if sharing = Always || !Flags.share_code
then
let getters =
List.mapi
(fun i (n, t) -> (G.i (LocalGet (nr (Int32.of_int i)))))
params
in
define_built_in env name params retty (fun env -> mk_body env getters);
G.i (Call (nr (E.built_in env name))) ^^
FakeMultiVal.load env retty
else begin
assert (sharing = Never);
let locals =
List.map
(fun (n, t) -> new_local_ env t n)
params
in
let set_locals = List.fold_right (fun (set, get, _) is-> is ^^ set) locals G.nop in
let getters = List.map (fun (set, get, _) -> get) locals in
set_locals ^^
mk_body env getters ^^ FakeMultiVal.store env retty ^^
FakeMultiVal.load env retty
end
(* Shorthands for various arities *)
let [@warning "-8"] share_code0 sharing env name retty mk_body =
share_code sharing env name [] retty (fun env [] -> mk_body env)
let [@warning "-8"] share_code1 sharing env name p1 retty mk_body =
share_code sharing env name [p1] retty (fun env [g1] -> mk_body env
g1
)
let [@warning "-8"] share_code2 sharing env name (p1,p2) retty mk_body =
share_code sharing env name [p1; p2] retty (fun env [g1; g2] -> mk_body env
g1
g2
)
let [@warning "-8"] share_code3 sharing env name (p1, p2, p3) retty mk_body =
share_code sharing env name [p1; p2; p3] retty (fun env [g1; g2; g3] -> mk_body env
g1
g2
g3
)
let [@warning "-8"] _share_code4 sharing env name (p1, p2, p3, p4) retty mk_body =
share_code sharing env name [p1; p2; p3; p4] retty (fun env [g1; g2; g3; g4]-> mk_body env
g1
g2
g3
g4
)
let [@warning "-8"] _share_code6 sharing env name (p1, p2, p3, p4, p5, p6) retty mk_body =
share_code sharing env name [p1; p2; p3; p4; p5; p6] retty (fun env [g1; g2; g3; g4; g5; g6] -> mk_body env
g1
g2
g3
g4
g5
g6
)
let [@warning "-8"] _share_code7 sharing env name (p1, p2, p3, p4, p5, p6, p7) retty mk_body =
share_code sharing env name [p1; p2; p3; p4; p5; p6; p7] retty (fun env [g1; g2; g3; g4; g5; g6; g7] -> mk_body env
g1
g2
g3
g4
g5
g6
g7
)
let [@warning "-8"] _share_code9 sharing env name (p1, p2, p3, p4, p5, p6, p7, p8, p9) retty mk_body =
share_code sharing env name [p1; p2; p3; p4; p5; p6; p7; p8; p9] retty (fun env [g1; g2; g3; g4; g5; g6; g7; g8; g9] -> mk_body env
g1
g2
g3
g4
g5
g6
g7
g8
g9
)
end (* Func *)
module RTS = struct
(* The connection to the C and Rust parts of the RTS *)
let system_imports env =
E.add_func_import env "rts" "initialize_incremental_gc" [] [];
E.add_func_import env "rts" "schedule_incremental_gc" [] [];
E.add_func_import env "rts" "incremental_gc" [] [];
E.add_func_import env "rts" "write_with_barrier" [I64Type; I64Type] [];
E.add_func_import env "rts" "allocation_barrier" [I64Type] [I64Type];
E.add_func_import env "rts" "running_gc" [] [I32Type];
E.add_func_import env "rts" "register_stable_type" [I64Type; I64Type] [];
E.add_func_import env "rts" "load_stable_actor" [] [I64Type];
E.add_func_import env "rts" "save_stable_actor" [I64Type] [];
E.add_func_import env "rts" "free_stable_actor" [] [];
E.add_func_import env "rts" "contains_field" [I64Type; I64Type] [I32Type];
E.add_func_import env "rts" "initialize_static_variables" [I64Type] [];
E.add_func_import env "rts" "get_static_variable" [I64Type] [I64Type];
E.add_func_import env "rts" "set_static_variable" [I64Type; I64Type] [];
E.add_func_import env "rts" "set_upgrade_instructions" [I64Type] [];
E.add_func_import env "rts" "get_upgrade_instructions" [] [I64Type];
E.add_func_import env "rts" "memcmp" [I64Type; I64Type; I64Type] [I32Type];
E.add_func_import env "rts" "version" [] [I64Type];
E.add_func_import env "rts" "parse_idl_header" [I32Type; I64Type; I64Type; I64Type; I64Type] [];
E.add_func_import env "rts" "idl_alloc_typtbl" [I64Type; I64Type; I64Type; I64Type; I64Type] [];
E.add_func_import env "rts" "idl_sub_buf_words" [I64Type; I64Type] [I64Type];
E.add_func_import env "rts" "idl_sub_buf_init" [I64Type; I64Type; I64Type] [];
E.add_func_import env "rts" "idl_sub"
[I64Type; I64Type; I64Type; I64Type; I64Type; I64Type; I64Type; I32Type; I32Type] [I32Type];
E.add_func_import env "rts" "leb128_decode" [I64Type] [I64Type];
E.add_func_import env "rts" "sleb128_decode" [I64Type] [I64Type];
E.add_func_import env "rts" "bigint_to_word32_wrap" [I64Type] [I32Type];
E.add_func_import env "rts" "bigint_of_word64" [I64Type] [I64Type];
E.add_func_import env "rts" "bigint_of_int64" [I64Type] [I64Type];
E.add_func_import env "rts" "bigint_of_float64" [F64Type] [I64Type];
E.add_func_import env "rts" "bigint_to_float64" [I64Type] [F64Type];
E.add_func_import env "rts" "bigint_to_word64_wrap" [I64Type] [I64Type];
E.add_func_import env "rts" "bigint_to_word64_trap" [I64Type] [I64Type];
E.add_func_import env "rts" "bigint_to_word64_trap_with" [I64Type; I64Type] [I64Type];
E.add_func_import env "rts" "bigint_eq" [I64Type; I64Type] [I32Type];
E.add_func_import env "rts" "bigint_isneg" [I64Type] [I32Type];
E.add_func_import env "rts" "bigint_count_bits" [I64Type] [I64Type];
E.add_func_import env "rts" "bigint_2complement_bits" [I64Type] [I64Type];
E.add_func_import env "rts" "bigint_lt" [I64Type; I64Type] [I32Type];
E.add_func_import env "rts" "bigint_gt" [I64Type; I64Type] [I32Type];
E.add_func_import env "rts" "bigint_le" [I64Type; I64Type] [I32Type];
E.add_func_import env "rts" "bigint_ge" [I64Type; I64Type] [I32Type];
E.add_func_import env "rts" "bigint_add" [I64Type; I64Type] [I64Type];
E.add_func_import env "rts" "bigint_sub" [I64Type; I64Type] [I64Type];
E.add_func_import env "rts" "bigint_mul" [I64Type; I64Type] [I64Type];
E.add_func_import env "rts" "bigint_rem" [I64Type; I64Type] [I64Type];
E.add_func_import env "rts" "bigint_div" [I64Type; I64Type] [I64Type];
E.add_func_import env "rts" "bigint_pow" [I64Type; I64Type] [I64Type];
E.add_func_import env "rts" "bigint_neg" [I64Type] [I64Type];
E.add_func_import env "rts" "bigint_lsh" [I64Type; I64Type] [I64Type];
E.add_func_import env "rts" "bigint_rsh" [I64Type; I64Type] [I64Type];
E.add_func_import env "rts" "bigint_abs" [I64Type] [I64Type];
E.add_func_import env "rts" "bigint_leb128_size" [I64Type] [I64Type];
E.add_func_import env "rts" "bigint_leb128_encode" [I64Type; I64Type] [];
E.add_func_import env "rts" "bigint_leb128_decode" [I64Type] [I64Type];
E.add_func_import env "rts" "bigint_leb128_decode_word64" [I64Type; I64Type; I64Type] [I64Type];
E.add_func_import env "rts" "bigint_sleb128_size" [I64Type] [I64Type];
E.add_func_import env "rts" "bigint_sleb128_encode" [I64Type; I64Type] [];
E.add_func_import env "rts" "bigint_sleb128_decode" [I64Type] [I64Type];
E.add_func_import env "rts" "bigint_sleb128_decode_word64" [I64Type; I64Type; I64Type] [I64Type];
E.add_func_import env "rts" "leb128_encode" [I64Type; I64Type] [];
E.add_func_import env "rts" "sleb128_encode" [I64Type; I64Type] [];
E.add_func_import env "rts" "utf8_valid" [I64Type; I64Type] [I32Type];
E.add_func_import env "rts" "utf8_validate" [I64Type; I64Type] [];
E.add_func_import env "rts" "skip_leb128" [I64Type] [];
E.add_func_import env "rts" "skip_any" [I64Type; I64Type; I32Type; I32Type] [];
E.add_func_import env "rts" "find_field" [I64Type; I64Type; I64Type; I32Type; I64Type] [I32Type];
E.add_func_import env "rts" "skip_fields" [I64Type; I64Type; I64Type; I64Type] [];
E.add_func_import env "rts" "remember_continuation" [I64Type] [I64Type];
E.add_func_import env "rts" "recall_continuation" [I64Type] [I64Type];
E.add_func_import env "rts" "peek_future_continuation" [I64Type] [I64Type];
E.add_func_import env "rts" "continuation_count" [] [I64Type];
E.add_func_import env "rts" "continuation_table_size" [] [I64Type];
E.add_func_import env "rts" "blob_of_text" [I64Type] [I64Type];
E.add_func_import env "rts" "text_compare" [I64Type; I64Type] [I64Type];
E.add_func_import env "rts" "text_concat" [I64Type; I64Type] [I64Type];
E.add_func_import env "rts" "text_iter_done" [I64Type] [I64Type];
E.add_func_import env "rts" "text_iter" [I64Type] [I64Type];
E.add_func_import env "rts" "text_iter_next" [I64Type] [I32Type];
E.add_func_import env "rts" "text_len" [I64Type] [I64Type];
E.add_func_import env "rts" "text_of_ptr_size" [I64Type; I64Type] [I64Type];
E.add_func_import env "rts" "text_singleton" [I32Type] [I64Type];
E.add_func_import env "rts" "text_size" [I64Type] [I64Type];
E.add_func_import env "rts" "text_to_buf" [I64Type; I64Type] [];
E.add_func_import env "rts" "text_lowercase" [I64Type] [I64Type];
E.add_func_import env "rts" "text_uppercase" [I64Type] [I64Type];
E.add_func_import env "rts" "region_init" [I64Type] [];
E.add_func_import env "rts" "alloc_region" [I64Type; I64Type; I64Type] [I64Type];
E.add_func_import env "rts" "init_region" [I64Type; I64Type; I64Type; I64Type] [];
E.add_func_import env "rts" "region_new" [] [I64Type];
E.add_func_import env "rts" "region_id" [I64Type] [I64Type];
E.add_func_import env "rts" "region_page_count" [I64Type] [I64Type];
E.add_func_import env "rts" "region_vec_pages" [I64Type] [I64Type];
E.add_func_import env "rts" "region_size" [I64Type] [I64Type];
E.add_func_import env "rts" "region_grow" [I64Type; I64Type] [I64Type];
E.add_func_import env "rts" "region_load_blob" [I64Type; I64Type; I64Type] [I64Type];
E.add_func_import env "rts" "region_store_blob" [I64Type; I64Type; I64Type] [];
E.add_func_import env "rts" "region_load_word8" [I64Type; I64Type] [I32Type];
E.add_func_import env "rts" "region_store_word8" [I64Type; I64Type; I32Type] [];
E.add_func_import env "rts" "region_load_word16" [I64Type; I64Type] [I32Type];
E.add_func_import env "rts" "region_store_word16" [I64Type; I64Type; I32Type] [];
E.add_func_import env "rts" "region_load_word32" [I64Type; I64Type] [I32Type];
E.add_func_import env "rts" "region_store_word32" [I64Type; I64Type; I32Type] [];
E.add_func_import env "rts" "region_load_word64" [I64Type; I64Type] [I64Type];
E.add_func_import env "rts" "region_store_word64" [I64Type; I64Type; I64Type] [];
E.add_func_import env "rts" "region_load_float64" [I64Type; I64Type] [F64Type];
E.add_func_import env "rts" "region_store_float64" [I64Type; I64Type; F64Type] [];
E.add_func_import env "rts" "region0_get" [] [I64Type];
E.add_func_import env "rts" "blob_of_principal" [I64Type] [I64Type];
E.add_func_import env "rts" "principal_of_blob" [I64Type] [I64Type];
E.add_func_import env "rts" "compute_crc32" [I64Type] [I32Type];
E.add_func_import env "rts" "blob_iter_done" [I64Type] [I64Type];
E.add_func_import env "rts" "blob_iter" [I64Type] [I64Type];
E.add_func_import env "rts" "blob_iter_next" [I64Type] [I64Type];
E.add_func_import env "rts" "pow" [F64Type; F64Type] [F64Type];
E.add_func_import env "rts" "sin" [F64Type] [F64Type];
E.add_func_import env "rts" "cos" [F64Type] [F64Type];
E.add_func_import env "rts" "tan" [F64Type] [F64Type];
E.add_func_import env "rts" "asin" [F64Type] [F64Type];
E.add_func_import env "rts" "acos" [F64Type] [F64Type];
E.add_func_import env "rts" "atan" [F64Type] [F64Type];
E.add_func_import env "rts" "atan2" [F64Type; F64Type] [F64Type];
E.add_func_import env "rts" "exp" [F64Type] [F64Type];
E.add_func_import env "rts" "log" [F64Type] [F64Type];
E.add_func_import env "rts" "fmod" [F64Type; F64Type] [F64Type];
E.add_func_import env "rts" "float_fmt" [F64Type; I64Type; I64Type] [I64Type];
E.add_func_import env "rts" "char_to_upper" [I32Type] [I32Type];
E.add_func_import env "rts" "char_to_lower" [I32Type] [I32Type];
E.add_func_import env "rts" "char_is_whitespace" [I32Type] [I32Type];
E.add_func_import env "rts" "char_is_lowercase" [I32Type] [I32Type];
E.add_func_import env "rts" "char_is_uppercase" [I32Type] [I32Type];
E.add_func_import env "rts" "char_is_alphabetic" [I32Type] [I32Type];
E.add_func_import env "rts" "get_max_live_size" [] [I64Type];
E.add_func_import env "rts" "get_reclaimed" [] [I64Type];
E.add_func_import env "rts" "alloc_words" [I64Type] [I64Type];
E.add_func_import env "rts" "get_total_allocations" [] [I64Type];
E.add_func_import env "rts" "get_heap_size" [] [I64Type];
E.add_func_import env "rts" "alloc_blob" [I64Type; I64Type] [I64Type];
E.add_func_import env "rts" "alloc_array" [I64Type; I64Type] [I64Type];
E.add_func_import env "rts" "read_persistence_version" [] [I64Type];
E.add_func_import env "rts" "stop_gc_before_stabilization" [] [];
E.add_func_import env "rts" "start_gc_after_destabilization" [] [];
E.add_func_import env "rts" "is_graph_stabilization_started" [] [I32Type];
E.add_func_import env "rts" "start_graph_stabilization" [I64Type; I64Type; I64Type] [];
E.add_func_import env "rts" "graph_stabilization_increment" [] [I32Type];
E.add_func_import env "rts" "start_graph_destabilization" [I64Type; I64Type] [];
E.add_func_import env "rts" "graph_destabilization_increment" [] [I32Type];
E.add_func_import env "rts" "get_graph_destabilized_actor" [] [I64Type];
E.add_func_import env "rts" "buffer_in_32_bit_range" [] [I64Type];
()
end (* RTS *)
module GC = struct
(* Record mutator/gc instructions counts *)
let instruction_counter env =
compile_const_32 0l ^^
E.call_import env "ic0" "performance_counter"
let register_globals env =
E.add_global64 env "__mutator_instructions" Mutable 0L;
E.add_global64 env "__collector_instructions" Mutable 0L
let get_mutator_instructions env =
G.i (GlobalGet (nr (E.get_global env "__mutator_instructions")))
let set_mutator_instructions env =
G.i (GlobalSet (nr (E.get_global env "__mutator_instructions")))
let get_collector_instructions env =
G.i (GlobalGet (nr (E.get_global env "__collector_instructions")))
let set_collector_instructions env =
G.i (GlobalSet (nr (E.get_global env "__collector_instructions")))
let record_mutator_instructions env =
match E.mode env with
| Flags.(ICMode | RefMode) ->
instruction_counter env ^^
set_mutator_instructions env
| _ -> G.nop
let record_collector_instructions env =
match E.mode env with
| Flags.(ICMode | RefMode) ->
instruction_counter env ^^
get_mutator_instructions env ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Sub)) ^^
set_collector_instructions env
| _ -> G.nop
let collect_garbage env =
record_mutator_instructions env ^^
E.collect_garbage env false ^^
record_collector_instructions env
end (* GC *)
module Heap = struct
(* General heap object functionality (allocation, setting fields, reading fields) *)
(* Memory addresses are 64 bit (I64Type). *)
let word_size = 8L
(* The heap base global can only be used late, see conclude_module
and GHC.register *)
let get_heap_base env =
G.i (GlobalGet (nr (E.get_global env "__heap_base")))
let get_total_allocation env =
E.call_import env "rts" "get_total_allocations"
let get_reclaimed env =
E.call_import env "rts" "get_reclaimed"
let get_memory_size =
G.i MemorySize ^^
compile_mul_const page_size
let get_max_live_size env =
E.call_import env "rts" "get_max_live_size"
(* Static allocation (always words)
(uses dynamic allocation for smaller and more readable code) *)
let alloc env (n : int64) : G.t =
compile_unboxed_const n ^^
E.call_import env "rts" "alloc_words"
(* Heap objects *)
(* At this level of abstraction, heap objects are just flat arrays of words *)
let load_field (i : int64) : G.t =
let offset = Int64.(add (mul word_size i) ptr_unskew) in
G.i (Load {ty = I64Type; align = 3; offset; sz = None})
let store_field (i : int64) : G.t =
let offset = Int64.(add (mul word_size i) ptr_unskew) in
G.i (Store {ty = I64Type; align = 3; offset; sz = None})
(* Or even as a single 64 bit float *)
let load_field_float64 (i : int64) : G.t =
let offset = Int64.(add (mul word_size i) ptr_unskew) in
G.i (Load {ty = F64Type; align = 3; offset; sz = None})
let store_field_float64 (i : int64) : G.t =
let offset = Int64.(add (mul word_size i) ptr_unskew) in
G.i (Store {ty = F64Type; align = 3; offset; sz = None})
(* Convenience functions related to memory *)
(* Copying bytes (works on unskewed memory addresses) *)
let memcpy env = G.i MemoryCopy
(* Comparing bytes (works on unskewed memory addresses) *)
let memcmp env = E.call_import env "rts" "memcmp" ^^ G.i (Convert (Wasm_exts.Values.I64 I64Op.ExtendUI32))
let register env =
let get_heap_base_fn = E.add_fun env "get_heap_base" (Func.of_body env [] [I64Type] (fun env ->
get_heap_base env
)) in
E.add_export env (nr {
name = Lib.Utf8.decode "get_heap_base";
edesc = nr (FuncExport (nr get_heap_base_fn))
})
let get_heap_size env =
E.call_import env "rts" "get_heap_size"
let get_static_variable env index =
compile_unboxed_const index ^^
E.call_import env "rts" "get_static_variable"
end (* Heap *)
module Stack = struct
(* The RTS includes C code which requires a shadow stack in linear memory.
We reserve some space for it at the beginning of memory space (just like
wasm-l would), this way stack overflow would cause out-of-memory, and not
just overwrite static data.
We sometimes use the stack space if we need small amounts of scratch space.
All pointers here are unskewed.
(We report logical stack overflow as "RTS Stack underflow" as the stack
grows downwards.)
*)
(* Predefined constant stack size of 4MB, according to the persistent memory layout. *)
let stack_size = 4 * 1024 * 1024
let end_ () = Int64.of_int stack_size
let register_globals env =
(* stack pointer *)
E.add_global64 env "__stack_pointer" Mutable (end_());
(* frame pointer *)
E.add_global64 env "__frame_pointer" Mutable (end_());
(* low watermark *)
if !Flags.measure_rts_stack then
E.add_global64 env "__stack_min" Mutable (end_());
E.export_global env "__stack_pointer"
let get_stack_ptr env =
G.i (GlobalGet (nr (E.get_global env "__stack_pointer")))
let set_stack_ptr env =
G.i (GlobalSet (nr (E.get_global env "__stack_pointer")))
let get_min env =
G.i (GlobalGet (nr (E.get_global env "__stack_min")))
let set_min env =
G.i (GlobalSet (nr (E.get_global env "__stack_min")))
let get_max_stack_size env =
if !Flags.measure_rts_stack then
compile_unboxed_const (end_()) ^^
get_min env ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Sub))
else (* report max available *)
compile_unboxed_const (end_())
let update_stack_min env =
if !Flags.measure_rts_stack then
get_stack_ptr env ^^
get_min env ^^
compile_comparison I64Op.LtU ^^
(E.if0
(get_stack_ptr env ^^
set_min env)
G.nop)
else G.nop
let stack_overflow env =
Func.share_code0 Func.Never env "stack_overflow" [] (fun env ->
(* read last word of reserved page to force trap *)
compile_unboxed_const 0xFFFF_FFFF_FFFF_FFFCL ^^
G.i (Load {ty = I64Type; align = 3; offset = 0L; sz = None}) ^^
G.i Unreachable
)
let alloc_words env n =
let n_bytes = Int64.mul n Heap.word_size in
(* avoid absurd allocations *)
assert (Int64.(to_int n_bytes) < stack_size);
(* alloc words *)
get_stack_ptr env ^^
compile_unboxed_const n_bytes ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Sub)) ^^
set_stack_ptr env ^^
update_stack_min env ^^
get_stack_ptr env ^^
(* check for stack overflow, if necessary *)
if n_bytes >= page_size then
get_stack_ptr env ^^
G.i (Unary (Wasm_exts.Values.I64 I64Op.Clz)) ^^
E.if0
G.nop (* we found leading zeros, i.e. no wraparound *)
(stack_overflow env)
else
G.nop
let free_words env n =
get_stack_ptr env ^^
compile_unboxed_const (Int64.mul n Heap.word_size) ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Add)) ^^
set_stack_ptr env
(* TODO: why not just remember and reset the stack pointer, instead of calling free_words? Also below *)
let with_words env name n f =
let (set_x, get_x) = new_local env name in
alloc_words env n ^^ set_x ^^
f get_x ^^
free_words env n
let dynamic_alloc_words env get_n =
get_stack_ptr env ^^
compile_divU_const Heap.word_size ^^
get_n ^^
compile_comparison I64Op.LtU ^^
(E.if0
(stack_overflow env)
G.nop) ^^
get_stack_ptr env ^^
get_n ^^
compile_mul_const Heap.word_size ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Sub)) ^^
set_stack_ptr env ^^
update_stack_min env ^^
get_stack_ptr env
let dynamic_free_words env get_n =
get_stack_ptr env ^^
get_n ^^
compile_mul_const Heap.word_size ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Add)) ^^
set_stack_ptr env
(* TODO: why not just remember and reset the stack pointer, instead of calling free_words? Also above*)
let dynamic_with_words env name f =
let (set_n, get_n) = new_local env "n" in
let (set_x, get_x) = new_local env name in
set_n ^^
dynamic_alloc_words env get_n ^^ set_x ^^
f get_x ^^
dynamic_free_words env get_n
let dynamic_with_bytes env name f =
(* round up to nearest wordsize *)
compile_add_const (Int64.sub Heap.word_size 1L) ^^
compile_divU_const Heap.word_size ^^
dynamic_with_words env name f
(* Stack Frames *)
(* Traditional frame pointer for accessing statically allocated locals/args (all words)
Used (sofar) only in serialization to compress Wasm stack
at cost of expanding Rust/C Stack (whose size we control)*)
let get_frame_ptr env =
G.i (GlobalGet (nr (E.get_global env "__frame_pointer")))
let set_frame_ptr env =
G.i (GlobalSet (nr (E.get_global env "__frame_pointer")))
(* Frame pointer operations *)
(* Enter/exit a new frame of `n` words, saving and restoring prev frame pointer *)
let with_frame env name n f =
(* reserve space for n words + saved frame_ptr *)
alloc_words env (Int64.add n 1L) ^^
(* store the current frame_ptr at offset 0 *)
get_frame_ptr env ^^
G.i (Store {ty = I64Type; align = 3; offset = 0L; sz = None}) ^^
get_stack_ptr env ^^
(* set_frame_ptr to stack_ptr *)
set_frame_ptr env ^^
(* do as f *)
f () ^^
(* assert frame_ptr == stack_ptr *)
get_frame_ptr env ^^
get_stack_ptr env ^^
compile_comparison I64Op.Eq ^^
E.else_trap_with env "frame_ptr <> stack_ptr" ^^
(* restore the saved frame_ptr *)
get_frame_ptr env ^^
G.i (Load {ty = I64Type; align = 3; offset = 0L; sz = None}) ^^
set_frame_ptr env ^^
(* free the frame *)
free_words env (Int64.add n 1L)
(* read local n of current frame *)
let get_local env n =
let offset = Int64.mul (Int64.add n 1L) Heap.word_size in
get_frame_ptr env ^^
G.i (Load { ty = I64Type; align = 3; offset; sz = None})
(* read local n of previous frame *)
let get_prev_local env n =
let offset = Int64.mul (Int64.add n 1L) Heap.word_size in
(* indirect through save frame_ptr at offset 0 *)
get_frame_ptr env ^^
G.i (Load { ty = I64Type; align = 3; offset = 0L; sz = None}) ^^
G.i (Load { ty = I64Type; align = 3; offset; sz = None})
(* set local n of current frame *)
let set_local env n =
let offset = Int64.mul (Int64.add n 1L) Heap.word_size in
Func.share_code1 Func.Never env ("set_local %i" ^ Int64.to_string n) ("val", I64Type) []
(fun env get_val ->
get_frame_ptr env ^^
get_val ^^
G.i (Store { ty = I64Type; align = 3; offset; sz = None}))
end (* Stack *)
module ContinuationTable = struct
(* See rts/motoko-rts/src/closure_table.rs *)
let remember env : G.t = E.call_import env "rts" "remember_continuation"
let recall env : G.t = E.call_import env "rts" "recall_continuation"
let peek_future env : G.t = E.call_import env "rts" "peek_future_continuation"
let count env : G.t = E.call_import env "rts" "continuation_count"
let size env : G.t = E.call_import env "rts" "continuation_table_size"
end (* ContinuationTable *)
module Bool = struct
(* Boolean literals are either 0 or non-zero (e.g. if they origin from RTS or external API).
They need not be shifted before put in the heap,
because the "zero page" never contains GC-ed objects
*)
let vanilla_lit = function
| false -> 0L
| true -> 1L (* or any other non-zero value *)
let lit b = compile_unboxed_const (vanilla_lit b)
let lit_rts_int32 b = compile_const_32 (Int64.to_int32 (vanilla_lit b))
let neg = compile_test I64Op.Eqz
let from_rts_int32 =
G.i (Convert (Wasm_exts.Values.I64 I64Op.ExtendUI32))
let to_rts_int32 =
G.i (Convert (Wasm_exts.Values.I32 I32Op.WrapI64))
let from_int64 =
compile_unboxed_const 0L ^^
compile_comparison I64Op.Ne
end (* Bool *)
module BitTagged = struct
(* This module takes care of pointer tagging:
A pointer to an object at offset `i` on the heap is represented as
`i-1`, so the low two bits of the pointer are always set (0b…11).
We call `i-1` a *skewed* pointer, in a feeble attempt to avoid the term
shifted, which may sound like a logical shift.
We use the constants ptr_skew and ptr_unskew to change a pointer as a
signpost where we switch between raw pointers to skewed ones.
This means we can store a small unboxed scalar x as (x `lsl` 1), and still
tell it apart from a pointer by looking at the last bits: if set, it is a
pointer.
Small here means:
* 0 ≤ x < 2^(ubits ty) for an unsigned type ty with (ubits ty) payload bits
* -2^sbits ≤ x < 2^sbits, for a signed type ty with (sbits ty) (= (ubits ty) - 1) payload bits
(i.e. excluding sign bit),
with the exception that compact Nat is regarded as signed to support subtyping.
Tagging needs to happen with a
* shift left by (32-ubits ty) for a signed or unsigned type ty; then
* a logical or of the (variable length) tag bits for ty.
Untagging needs to happen with an
* logical right shift (for unsigned type ty in Nat{8,16,32,64}, Char).
* _arithmetic_ right shift (for signed type ty Int{8,16,32,64}, Int but also Nat).
This is the right thing to do for signed numbers.
Nat is treated as signed to allow coercion-free subtyping.
The low bits 32 - (ubits ty) store the tag bits of the value.
Boolean false is a non-pointer by construction.
Boolean true (1) needs not be shifted as GC will not consider it.
Summary:
0b…11: A pointer
0b…x0: A shifted scalar
0b000: `false`
0b001: `true`
Note that {Nat,Int}{8,16,32} and compact {Int,Nat}64 and compact Int, Nat are explicitly tagged.
The bits are stored in the _most_ significant bits of the `i64`,
with the lower bits storing the variable length tag.
{Int,Nat}64 are stored in signed and unsigned forms.
Compact {Int,Nat} are (both) stored in signed form to support coercion free subtyping of Nat < Int.
That means that one bit, the highest bit, of the compact Nat representation is unused and the
representable range for both compact Int and Nat values is -2^(sbits Int) ≤ x < 2^(sbits Int).
This describes the vanilla representation of small and compact scalars,
used as the uniform representation of values and when stored in heap structures.
See module TaggedSmallWord.
The stack representation of a small scalars, UnboxedWord64 {Int,Nat}{8,16,32},
on the other hand, always has all tag bits cleared, with the payload in the high bits of the word.
The stack representation of compact or unboxed scalars or UnboxedWord64 {Int,Nat}64,
on the other hand, is the natural (unpadded) machine representation.
All arithmetic is implemented directly on the stack (not vanilla) representation of scalars.
Proper tags bits are removed/added when loading from vanilla or storing to vanilla representation.
*)
let is_true_literal env =
compile_eq_const 1L
(* Note: `true` is not handled here, needs specific check where needed. *)
let if_tagged_scalar env retty is1 is2 =
compile_bitand_const 0x1L ^^
E.if_ env retty is2 is1
(* With two bit-tagged pointers on the stack, decide
whether both are scalars and invoke is1 (the fast path)
if so, and otherwise is2 (the slow path).
Note: `true` is not handled here, needs specific check where needed.
*)
let if_both_tagged_scalar env retty is1 is2 =
G.i (Binary (Wasm_exts.Values.I64 I64Op.Or)) ^^
compile_bitand_const 0x1L ^^
E.if_ env retty is2 is1
let ubits_of pty = TaggingScheme.ubits_of pty
let sbits_of pty = (ubits_of pty) - 1
(* 64 bit numbers *)
(* static *)
let can_tag_const pty (n : int64) = Type.(
match pty with
| Nat | Int | Int64 | Int32 ->
let sbits = sbits_of pty in
let lower_bound = Int64.(neg (shift_left 1L sbits)) in
let upper_bound = Int64.shift_left 1L sbits in
lower_bound <= n && n < upper_bound
| Nat64 | Nat32 ->
let ubits = ubits_of pty in
let upper_bound = Int64.shift_left 1L ubits in
0L <= n && n < upper_bound
| _ -> assert false)
let tag_const pty i = Type.(
match pty with
| Nat | Int | Int64 | Int32
| Nat64 | Nat32 ->
Int64.shift_left i (64 - ubits_of pty)
(* tag *)
|> Int64.logor (TaggingScheme.tag_of_typ pty)
| _ -> assert false)
(* dynamic *)
let sanity_check_can_tag_signed env pty get_x =
if TaggingScheme.debug || !Flags.sanity then
get_x ^^
Func.share_code2 Func.Always env (prim_fun_name pty "check_can_tag_i64") (("res", I64Type), ("x", I64Type)) [I64Type]
(fun env get_res get_x -> Type.(
match pty with
| Nat | Int | Int64 | Int32 ->
let sbits = sbits_of pty in
let lower_bound = Int64.(neg (shift_left 1L sbits)) in
let upper_bound = Int64.shift_left 1L sbits in
(* lower_bound <= x < upper_bound *)
compile_unboxed_const lower_bound ^^
get_x ^^
compile_comparison I64Op.LeS ^^
get_x ^^ compile_unboxed_const upper_bound ^^
compile_comparison I64Op.LtS ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.And))
| Nat64 | Nat32 ->
let ubits = ubits_of pty in
let upper_bound = Int64.shift_left 1L ubits in
(* 0 <= x < upper_bound *)
get_x ^^ compile_unboxed_const upper_bound ^^
compile_comparison I64Op.LtU
| _ ->
assert false) ^^
get_res ^^
compile_comparison I64Op.Eq ^^
E.else_trap_with env (prim_fun_name pty "check_can_tag_i64") ^^
get_res)
else
G.nop
let if_can_tag_signed env pty retty is1 is2 = Type.(
match pty with
| Nat | Int | Int64 ->
Func.share_code1 Func.Never env
(prim_fun_name pty "if_can_tag_i64") ("x", I64Type) [I64Type] (fun env get_x ->
(* checks that all but the low sbits are either all 0 or all 1 *)
get_x ^^
get_x ^^ compile_shrS_const (Int64.of_int ((64 - sbits_of pty))) ^^
G.i (Binary (Wasm_exts.Values.I64 I32Op.Xor)) ^^
compile_shrU_const (Int64.of_int (sbits_of pty)) ^^
compile_test I64Op.Eqz ^^
sanity_check_can_tag_signed env pty get_x) ^^
E.if_ env retty is1 is2
| Nat64 ->
Func.share_code1 Func.Never env
(prim_fun_name pty "if_can_tag_i64") ("x", I64Type) [I64Type] (fun env get_x ->
(* checks that all but the low ubits are 0 *)
get_x ^^ compile_shrU_const (Int64.of_int (ubits_of pty)) ^^
compile_test I64Op.Eqz ^^
sanity_check_can_tag_signed env pty get_x) ^^
E.if_ env retty is1 is2
| _ -> assert false)
let if_can_tag_unsigned env pty retty is1 is2 = Type.(
match pty with
| Nat | Int | Int64 ->
let sbitsL = Int64.of_int (sbits_of pty) in
compile_shrU_const sbitsL ^^
compile_test I64Op.Eqz ^^
E.if_ env retty is1 is2
| Nat64 ->
let ubitsL = Int64.of_int (ubits_of pty) in
compile_shrU_const ubitsL ^^
E.if_ env retty is2 is1 (* NB: swapped branches *)
| _ -> assert false)
let tag env pty = (* TBR *)
let ubitsl = Int64.of_int (ubits_of pty) in
compile_shl_const (Int64.sub 64L ubitsl) ^^
(* tag *)
compile_bitor_const (TaggingScheme.tag_of_typ pty)
let sanity_check_tag line env ty =
if TaggingScheme.debug || !(Flags.sanity) then
let name =
(prim_fun_name ty "sanity_check_tag") ^
(if TaggingScheme.debug then Int.to_string line else "")
in
let tag_mask = Int64.(sub (shift_left 1L (64 - TaggingScheme.ubits_of ty)) one) in
(Func.share_code1 Func.Always env name ("v", I64Type) [I64Type] (fun env get_n ->
get_n ^^
compile_bitand_const tag_mask ^^
compile_eq_const (TaggingScheme.tag_of_typ ty) ^^
E.else_trap_with env "unexpected tag" ^^
get_n))
else G.nop
let untag line env pty = Type.(match pty with
| Nat | Int | Int64 | Int32 | Int16 | Int8 ->
let ubitsl = Int64.of_int (ubits_of pty) in
sanity_check_tag line env pty ^^
compile_shrS_const (Int64.sub 64L ubitsl)
| Nat64 | Nat32 | Nat16 | Nat8 ->
let ubitsl = Int64.of_int (ubits_of pty) in
sanity_check_tag line env pty ^^
compile_shrU_const (Int64.sub 64L ubitsl)
| _ -> assert false)
let clear_tag env pty =
if TaggingScheme.tag_of_typ pty <> 0L then
let shift_amount = 64 - ubits_of pty in
let mask = Int64.(lognot (sub (shift_left one shift_amount) one)) in
compile_bitand_const mask
else G.nop
end (* BitTagged *)
module Tagged = struct
(* Tagged objects all have an object header consisting of a tag and a forwarding pointer.
The tag is to describe their runtime type and serves to traverse the heap
(serialization, GC), but also for objectification of arrays.
The tag is a word at the beginning of the object.
The (skewed) forwarding pointer supports object moving in the incremental garbage collection.
obj header
┌──────┬─────────┬──
│ tag │ fwd ptr │ ...
└──────┴─────────┴──
Attention: This mapping is duplicated in these places
* here
* motoko-rts/src/types.rs
* motoko-rts/src/text.rs
* motoko-rts/src/memory.rs
* motoko-rts/src/bigint.rs
* motoko-rts/src/blob-iter.rs
* motoko-rts/src/static-checks.rs
* In all GC implementations in motoko-rts/src/gc/
so update all!
*)
type bits_sort =
| U (* signed *)
| S (* unsigned *)
| F (* float *)
type array_sort =
| I (* [ T ] *)
| M (* [var T ] *)
| T (* (T,+) *)
| S (* shared ... -> ... *)
type blob_sort =
| B (* Blob *)
| T (* Text *)
| P (* Principal *)
| A (* actor { ... } *)
type [@warning "-37"] tag =
| Object
| Array of array_sort (* Also a tuple *)
| Bits64 of bits_sort (* Contains a 64 bit number *)
| MutBox (* used for mutable heap-allocated variables *)
| Closure
| Some (* For opt *)
| Variant
| Blob of blob_sort
| Indirection (* Only used by the GC *)
| BigInt
| Concat (* String concatenation, used by rts/text.c *)
| OneWordFiller (* Only used by the RTS *)
| FreeSpace (* Only used by the RTS *)
| Region
| ArraySliceMinimum (* Used by the GC for incremental array marking *)
| StableSeen (* Marker that we have seen this thing before *)
| CoercionFailure (* Used in the Candid decoder. Static singleton! *)
(* Tags needs to have the lowest bit set, to allow distinguishing object
headers from heap locations (object or field addresses).
(Reminder: objects and fields are word-aligned so will have the lowest two
bits unset) *)
let int_of_tag = function
| Object -> 1L
| Array I -> 3L
| Array M -> 5L
| Array T -> 7L
| Array S -> 9L
| Bits64 U -> 11L
| Bits64 S -> 13L
| Bits64 F -> 15L
| MutBox -> 17L
| Closure -> 19L
| Some -> 21L
| Variant -> 23L
| Blob B -> 25L
| Blob T -> 27L
| Blob P -> 29L
| Blob A -> 31L
| Indirection -> 33L
| BigInt -> 35L
| Concat -> 37L
| Region -> 39L
| OneWordFiller -> 41L
| FreeSpace -> 43L
| ArraySliceMinimum -> 44L
(* Next two tags won't be seen by the GC, so no need to set the lowest bit
for `CoercionFailure` and `StableSeen` *)
| CoercionFailure -> 0xffff_ffff_ffff_fffeL
| StableSeen -> 0xffff_ffff_ffff_ffffL
(*
The null pointer is the sentinel `0xffff_ffff_ffff_fffbL` (skewed representation).
This serves for efficient null tests by using direct pointer comparison.
The null pointer must not be dereferenced.
Null tests are possible without resolving the forwarding pointer of a non-null comparand.
*)
let null_vanilla_pointer = 0xffff_ffff_ffff_fffbL (* skewed, pointing to last unallocated Wasm page *)
let null_pointer = compile_unboxed_const null_vanilla_pointer
let is_null env = compile_eq_const null_vanilla_pointer
let not_null env =
(* null test works without forwarding pointer resolution of a non-null comparand *)
null_pointer ^^
compile_comparison I64Op.Ne
let header_size = 2L
(* The tag *)
let tag_field = 0L
let forwarding_pointer_field = 1L
(* Note: post-allocation barrier must be applied after initialization *)
let alloc env size tag =
assert (size > 1L);
let name = Printf.sprintf "alloc_size<%d>_tag<%d>" (Int64.to_int size) (Int64.to_int (int_of_tag tag)) in
Func.share_code0 Func.Never env name [I64Type] (fun env ->
let set_object, get_object = new_local env "new_object" in
Heap.alloc env size ^^
set_object ^^ get_object ^^
compile_unboxed_const (int_of_tag tag) ^^
Heap.store_field tag_field ^^
get_object ^^ (* object pointer *)
get_object ^^ (* forwarding pointer *)
Heap.store_field forwarding_pointer_field ^^
get_object
)
let load_forwarding_pointer env =
Heap.load_field forwarding_pointer_field
let store_tag env tag =
load_forwarding_pointer env ^^
compile_unboxed_const (int_of_tag tag) ^^
Heap.store_field tag_field
let load_tag env =
load_forwarding_pointer env ^^
Heap.load_field tag_field
let sanity_check_tag line env tag =
let tag = int_of_tag tag in
let name = "sanity_check_tag_" ^ Int64.to_string tag ^
(if TaggingScheme.debug then Int.to_string line else "")
in
if TaggingScheme.debug || !Flags.sanity then
Func.share_code1 Func.Always env name ("obj", I64Type) [I64Type]
(fun env get_obj ->
get_obj ^^
load_tag env ^^
compile_unboxed_const tag ^^
compile_comparison I64Op.Eq ^^
E.else_trap_with env name ^^
get_obj)
else
G.nop
let check_forwarding env unskewed =
let name = "check_forwarding_" ^ if unskewed then "unskewed" else "skewed" in
Func.share_code1 Func.Always env name ("object", I64Type) [I64Type] (fun env get_object ->
let set_object = G.setter_for get_object in
(if unskewed then
get_object ^^
compile_unboxed_const ptr_skew ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Add)) ^^
set_object
else G.nop) ^^
get_object ^^
load_forwarding_pointer env ^^
get_object ^^
compile_comparison I64Op.Eq ^^
E.else_trap_with env "missing object forwarding" ^^
get_object ^^
(if unskewed then
compile_unboxed_const ptr_unskew ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Add))
else G.nop))
let check_forwarding_for_store env typ =
let (set_value, get_value, _) = new_local_ env typ "value" in
set_value ^^ check_forwarding env false ^^ get_value
let load_field env index =
(if !Flags.sanity then check_forwarding env false else G.nop) ^^
Heap.load_field index
let store_field env index =
(if !Flags.sanity then check_forwarding_for_store env I64Type else G.nop) ^^
Heap.store_field index
let load_field_float64 env index =
(if !Flags.sanity then check_forwarding env false else G.nop) ^^
Heap.load_field_float64 index
let store_field_float64 env index =
(if !Flags.sanity then check_forwarding_for_store env F64Type else G.nop) ^^
Heap.store_field_float64 index
(* Branches based on the tag of the object pointed to,
leaving the object on the stack afterwards. *)
let branch_default env retty def (cases : (tag * G.t) list) : G.t =
let (set_tag, get_tag) = new_local env "tag" in
let rec go = function
| [] -> def
| ((tag, code) :: cases) ->
get_tag ^^
compile_eq_const (int_of_tag tag) ^^
E.if_ env retty code (go cases)
in
load_tag env ^^
set_tag ^^
go cases
let allocation_barrier env =
E.call_import env "rts" "allocation_barrier"
let write_with_barrier env =
let (set_value, get_value) = new_local env "written_value" in
let (set_location, get_location) = new_local env "write_location" in
set_value ^^ set_location ^^
(* performance gain by first checking the GC state *)
E.call_import env "rts" "running_gc" ^^
Bool.from_rts_int32 ^^
E.if0 (
get_location ^^ get_value ^^
E.call_import env "rts" "write_with_barrier"
) (
get_location ^^ get_value ^^
store_unskewed_ptr
)
let obj env tag element_instructions : G.t =
let n = List.length element_instructions in
let size = (Int64.add (Wasm.I64.of_int_u n) header_size) in
let (set_object, get_object) = new_local env "new_object" in
alloc env size tag ^^
set_object ^^
let init_elem idx instrs : G.t =
get_object ^^
instrs ^^
Heap.store_field (Int64.add (Wasm.I64.of_int_u idx) header_size)
in
G.concat_mapi init_elem element_instructions ^^
get_object ^^
allocation_barrier env
let shared_object env allocation =
let index = E.object_pool_add env allocation in
E.SharedObject index
let materialize_shared_value env = function
| E.Vanilla vanilla -> compile_unboxed_const vanilla
| E.SharedObject index -> Heap.get_static_variable env index
let share env allocation =
materialize_shared_value env (shared_object env allocation)
end (* Tagged *)
module MutBox = struct
(*
Mutable heap objects
┌──────┬─────┬─────────┐
│ obj header │ payload │
└──────┴─────┴─────────┘
The object header includes the obj tag (MutBox) and the forwarding pointer.
*)
let field = Tagged.header_size
let alloc env =
Tagged.obj env Tagged.MutBox [ compile_unboxed_zero ]
let load_field env =
Tagged.load_forwarding_pointer env ^^
Tagged.load_field env field
let store_field env =
let (set_mutbox_value, get_mutbox_value) = new_local env "mutbox_value" in
set_mutbox_value ^^
Tagged.load_forwarding_pointer env ^^
get_mutbox_value ^^
Tagged.store_field env field
let add_global_mutbox env =
E.object_pool_add env alloc
end
module Opt = struct
(* The Option type. Optional values are represented as
1. The null literal being the sentinel null pointer value, see above.
2. ┌──────┬─────────┐
│ some │ payload │
└──────┴─────────┘
A heap-allocated box for `?v` values. Should only ever contain null or
another such box.
3. Anything else (pointer or unboxed scalar): Constituent value, implicitly
injected into the opt type.
This way, `?t` is represented without allocation, with the only exception of
the value `?ⁿnull` for n>0.
NB: `?ⁿnull` is essentially represented by the unary encoding of the number
of n. This could be optimized further, by storing `n` in the Some payload,
instead of a pointer, but unlikely worth it.
*)
let some_payload_field = Tagged.header_size
let null_vanilla_lit = Tagged.null_vanilla_pointer
let null_lit env = Tagged.null_pointer
let is_null = Tagged.is_null
let is_some = Tagged.not_null
let alloc_some env get_payload =
Tagged.obj env Tagged.Some [ get_payload ]
let inject env e =
e ^^
Func.share_code1 Func.Never env "opt_inject" ("x", I64Type) [I64Type] (fun env get_x ->
get_x ^^ BitTagged.if_tagged_scalar env [I64Type]
( get_x ) (* scalar, no wrapping *)
( get_x ^^ BitTagged.is_true_literal env ^^ (* exclude true literal since `branch_default` follows the forwarding pointer *)
E.if_ env [I64Type]
( get_x ) (* true literal, no wrapping *)
( get_x ^^ is_some env ^^
E.if_ env [I64Type]
( get_x ^^ Tagged.branch_default env [I64Type]
( get_x ) (* default tag, no wrapping *)
[ Tagged.Some, alloc_some env get_x ]
)
( alloc_some env get_x ) (* ?ⁿnull for n > 0 *)
)
)
)
let constant env = function
| E.Vanilla value when value = null_vanilla_lit -> Tagged.shared_object env (fun env -> alloc_some env (null_lit env)) (* ?ⁿnull for n > 0 *)
| E.Vanilla value -> E.Vanilla value (* not null and no `Opt` object *)
| shared_value ->
Tagged.shared_object env (fun env ->
let materialized_value = Tagged.materialize_shared_value env shared_value in
inject env materialized_value (* potentially wrap in new `Opt` *)
)
(* This function is used where conceptually, Opt.inject should be used, but
we know for sure that it wouldn’t do anything anyways, except dereferencing the forwarding pointer *)
let inject_simple env e =
e ^^ Tagged.load_forwarding_pointer env
let load_some_payload_field env =
Tagged.load_forwarding_pointer env ^^
Tagged.load_field env some_payload_field
let project env =
Func.share_code1 Func.Never env "opt_project" ("x", I64Type) [I64Type] (fun env get_x ->
get_x ^^ BitTagged.if_tagged_scalar env [I64Type]
( get_x ) (* scalar, no wrapping *)
( get_x ^^ BitTagged.is_true_literal env ^^ (* exclude true literal since `branch_default` follows the forwarding pointer *)
E.if_ env [I64Type]
( get_x ) (* true literal, no wrapping *)
( get_x ^^ Tagged.branch_default env [I64Type]
( get_x ) (* default tag, no wrapping *)
[ Tagged.Some, get_x ^^ load_some_payload_field env ]
)
)
)
end (* Opt *)
module Variant = struct
(* The Variant type. We store the variant tag in a first word; we can later
optimize and squeeze it in the Tagged tag. We can also later support unboxing
variants with an argument of type ().
┌──────┬─────┬────────────┬─────────┐
│ obj header │ varianttag │ payload │
└──────┴─────┴────────────┴─────────┘
The object header includes the obj tag (TAG_VARIANT) and the forwarding pointer.
*)
let variant_tag_field = Tagged.header_size
let payload_field = Int64.add variant_tag_field 1L
let hash_variant_label env : Mo_types.Type.lab -> int64 =
E.hash env
let inject env l e =
Tagged.obj env Tagged.Variant [compile_unboxed_const (hash_variant_label env l); e]
let get_variant_tag env =
Tagged.load_forwarding_pointer env ^^
Tagged.load_field env variant_tag_field
let project env =
Tagged.load_forwarding_pointer env ^^
Tagged.load_field env payload_field
(* Test if the top of the stack points to a variant with this label *)
let test_is env l =
get_variant_tag env ^^
compile_eq_const (hash_variant_label env l)
end (* Variant *)
module Closure = struct
(* In this module, we deal with closures, i.e. functions that capture parts
of their environment.
The structure of a closure is:
┌──────┬─────┬───────┬──────┬──────────────┐
│ obj header │ funid │ size │ captured ... │
└──────┴─────┴───────┴──────┴──────────────┘
The object header includes the object tag (TAG_CLOSURE) and the forwarding pointer.
*)
let header_size = Int64.add Tagged.header_size 2L
let funptr_field = Tagged.header_size
let len_field = Int64.add 1L Tagged.header_size
let load_data env i =
Tagged.load_forwarding_pointer env ^^
Tagged.load_field env (Int64.add header_size i)
let store_data env i =
let (set_closure_data, get_closure_data) = new_local env "closure_data" in
set_closure_data ^^
Tagged.load_forwarding_pointer env ^^
get_closure_data ^^
Tagged.store_field env (Int64.add header_size i)
let prepare_closure_call env =
Tagged.load_forwarding_pointer env
(* Expect on the stack
* the function closure (using prepare_closure_call)
* and arguments (n-ary!)
* the function closure again!
*)
let call_closure env n_args n_res =
(* Calculate the wasm type for a given calling convention.
An extra first argument for the closure! *)
let ty = E.func_type env (FuncType (
I64Type :: Lib.List.make n_args I64Type,
FakeMultiVal.ty (Lib.List.make n_res I64Type))) in
(* get the table index *)
Tagged.load_forwarding_pointer env ^^
Tagged.load_field env funptr_field ^^
G.i (Convert (Wasm_exts.Values.I32 I32Op.WrapI64)) ^^
(* All done: Call! *)
let table_index = 0l in
G.i (CallIndirect (nr table_index, nr ty)) ^^
FakeMultiVal.load env (Lib.List.make n_res I64Type)
let constant env get_fi =
let fi = Wasm.I64_convert.extend_i32_u (E.add_fun_ptr env (get_fi ())) in
Tagged.shared_object env (fun env -> Tagged.obj env Tagged.Closure [
compile_unboxed_const fi;
compile_unboxed_const 0L
])
end (* Closure *)
module BoxedWord64 = struct
(* We store large word64s, nat64s and int64s in immutable boxed 64bit heap objects.
Small values are stored unboxed, tagged, see BitTagged. The bit-tagging logic is
contained in BitTagged; here we just do the boxing.
The heap layout of a BoxedWord64 is:
┌──────┬─────┬─────┐
│ obj header │ i64 │
└──────┴─────┴─────┘
The object header includes the object tag (Bits64) and the forwarding pointer.
*)
let payload_field = Tagged.header_size
let heap_tag env pty =
match pty with
| Type.Nat64 -> Tagged.(Bits64 U)
| Type.Int64 -> Tagged.(Bits64 S)
| _ -> assert false
let compile_box env pty compile_elem : G.t =
let (set_i, get_i) = new_local env "boxed_i64" in
let size = 4L in
Tagged.alloc env size (heap_tag env pty) ^^
set_i ^^
get_i ^^ compile_elem ^^ Tagged.store_field env payload_field ^^
get_i ^^
Tagged.allocation_barrier env
let constant env pty i =
if BitTagged.can_tag_const pty i
then
E.Vanilla (BitTagged.tag_const pty i)
else
Tagged.shared_object env (fun env -> compile_box env pty (compile_unboxed_const i))
let box env pty =
Func.share_code1 Func.Never env
(prim_fun_name pty "box64") ("n", I64Type) [I64Type] (fun env get_n ->
get_n ^^ BitTagged.if_can_tag_signed env pty [I64Type]
(get_n ^^ BitTagged.tag env pty)
(compile_box env pty get_n)
)
let unbox env pty =
Func.share_code1 Func.Never env
(prim_fun_name pty "unbox64") ("n", I64Type) [I64Type] (fun env get_n ->
get_n ^^
BitTagged.if_tagged_scalar env [I64Type]
(get_n ^^ BitTagged.untag __LINE__ env pty)
(get_n ^^
Tagged.load_forwarding_pointer env ^^
Tagged.(sanity_check_tag __LINE__ env (heap_tag env pty)) ^^
Tagged.load_field env payload_field)
)
end (* BoxedWord64 *)
module Word64 = struct
let compile_add env = G.i (Binary (Wasm_exts.Values.I64 I64Op.Add))
let compile_signed_sub env = G.i (Binary (Wasm_exts.Values.I64 I64Op.Sub))
let compile_mul env = G.i (Binary (Wasm_exts.Values.I64 I64Op.Mul))
let compile_signed_div env = G.i (Binary (Wasm_exts.Values.I64 I64Op.DivS))
let compile_signed_mod env = G.i (Binary (Wasm_exts.Values.I64 I64Op.RemS))
let compile_unsigned_div env = G.i (Binary (Wasm_exts.Values.I64 I64Op.DivU))
let compile_unsigned_rem env = G.i (Binary (Wasm_exts.Values.I64 I64Op.RemU))
let compile_unsigned_sub env =
Func.share_code2 Func.Never env "nat_sub" (("n1", I64Type), ("n2", I64Type)) [I64Type] (fun env get_n1 get_n2 ->
get_n1 ^^ get_n2 ^^ compile_comparison I64Op.LtU ^^
E.then_trap_with env "Natural subtraction underflow" ^^
get_n1 ^^ get_n2 ^^ G.i (Binary (Wasm_exts.Values.I64 I64Op.Sub))
)
let compile_unsigned_pow env =
let name = prim_fun_name Type.Nat64 "wpow_nat" in
Func.share_code2 Func.Always env name (("n", I64Type), ("exp", I64Type)) [I64Type]
(fun env get_n get_exp ->
let set_n = G.setter_for get_n in
let set_exp = G.setter_for get_exp in
let (set_acc, get_acc) = new_local env "acc" in
(* start with result = 1 *)
compile_unboxed_const 1L ^^ set_acc ^^
(* handle exp == 0 *)
get_exp ^^ compile_test I64Op.Eqz ^^
E.if1 I64Type get_acc (* done *)
begin
G.loop0 begin
(* Are we done? *)
get_exp ^^ compile_unboxed_const 1L ^^ compile_comparison I64Op.LeU ^^
E.if0 G.nop (* done *)
begin
(* Check low bit of exp to see if we need to multiply *)
get_exp ^^ compile_shl_const 63L ^^ compile_test I64Op.Eqz ^^
E.if0 G.nop
begin
(* Multiply! *)
get_acc ^^ get_n ^^ G.i (Binary (Wasm_exts.Values.I64 I64Op.Mul)) ^^ set_acc
end ^^
(* Square n, and shift exponent *)
get_n ^^ get_n ^^ G.i (Binary (Wasm_exts.Values.I64 I64Op.Mul)) ^^ set_n ^^
get_exp ^^ compile_shrU_const 1L ^^ set_exp ^^
(* And loop *)
G.i (Br (nr 1l))
end
end ^^
(* Multiply a last time *)
get_acc ^^ get_n ^^ G.i (Binary (Wasm_exts.Values.I64 I64Op.Mul))
end
)
let compile_signed_wpow env =
Func.share_code2 Func.Never env "wrap_pow_Int64" (("n", I64Type), ("exp", I64Type)) [I64Type]
(fun env get_n get_exp ->
get_exp ^^
compile_unboxed_const 0L ^^
compile_comparison I64Op.GeS ^^
E.else_trap_with env "negative power" ^^
get_n ^^ get_exp ^^ compile_unsigned_pow env
)
let _compile_eq env = compile_comparison I64Op.Eq
let compile_relop env i64op = compile_comparison i64op
let btst_kernel env =
let (set_b, get_b) = new_local env "b" in
set_b ^^ compile_unboxed_const 1L ^^ get_b ^^ G.i (Binary (Wasm_exts.Values.I64 I64Op.Shl)) ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.And))
end (* BoxedWord64 *)
module TaggedSmallWord = struct
(* While smaller-than-64bit words are treated as i64 from the WebAssembly
perspective, there are certain differences that are type based. This module
provides helpers to abstract over those.
Caution: Some functions here are also used for unboxed Nat64/Int64, while others
are _only_ used for the small ones. Check call-sites!
*)
let toNat = Type.(function
| Int8 | Nat8 -> Nat8
| Int16 | Nat16 -> Nat16
| Int32 | Nat32 -> Nat32
| Int64 | Nat64 -> Nat64
| _ -> assert false)
let bits_of_type = Type.(function
| Int8 | Nat8 -> 8
| Int16 | Nat16 -> 16
| Char -> 21
| Nat32 | Int32 -> 32
(* unboxed on stack *)
| Nat64 | Int64 -> 64
| _ -> assert false)
let tag_of_type pty = Type.(match pty with
| Int8 | Nat8
| Int16 | Nat16
| Int32 | Nat32
| Char ->
TaggingScheme.tag_of_typ pty
(* unboxed on stack *)
| Int64 | Nat64 -> 0L
| _ -> assert false)
let shift_of_type ty = Int64.of_int (64 - bits_of_type ty)
let bitwidth_mask_of_type = function
| Type.(Int8|Nat8) -> 0b111L
| Type.(Int16|Nat16) -> 0b1111L
| Type.(Int32|Nat32) -> 0b11111L
| p -> todo "bitwidth_mask_of_type" (Arrange_type.prim p) 0L
let const_of_type ty n = Int64.(shift_left n (to_int (shift_of_type ty)))
let padding_of_type ty = Int64.(sub (const_of_type ty 1L) one)
let mask_of_type ty = Int64.lognot (padding_of_type ty)
(* Makes sure that we only shift/rotate the maximum number of bits available in the word. *)
let clamp_shift_amount = function
| Type.(Nat64|Int64) -> G.nop
| ty -> compile_bitand_const (bitwidth_mask_of_type ty)
let shift_leftWordNtoI64 = compile_shl_const
(* Makes sure that the word payload (e.g. shift/rotate amount) is in the LSB bits of the word. *)
let lsb_adjust = function
| Type.(Int64|Nat64) -> G.nop
| Type.(Nat8|Nat16|Nat32) as ty -> compile_shrU_const (shift_of_type ty)
| Type.(Int8|Int16|Int32) as ty -> compile_shrS_const (shift_of_type ty)
| Type.Char as ty -> compile_shrU_const (shift_of_type ty)
| _ -> assert false
(* Makes sure that the word payload (e.g. operation result) is in the MSB bits of the word. *)
let msb_adjust = function
| Type.(Int64|Nat64) -> G.nop
| ty -> shift_leftWordNtoI64 (shift_of_type ty)
(* Makes sure that the word representation invariant is restored. *)
let sanitize_word_result = function
| Type.(Nat64|Int64) -> G.nop
| ty -> compile_bitand_const (mask_of_type ty)
(* Sets the number (according to the type's word invariant) of LSBs. *)
let compile_word_padding = function
| Type.(Nat64|Int64) -> G.nop
| ty -> compile_bitor_const (padding_of_type ty)
(* Kernel for counting leading zeros, according to the word invariant. *)
let clz_kernel ty =
compile_word_padding ty ^^
G.i (Unary (Wasm_exts.Values.I64 I64Op.Clz)) ^^
msb_adjust ty
(* Kernel for counting trailing zeros, according to the word invariant. *)
let ctz_kernel ty =
compile_word_padding ty ^^
compile_rotr_const (shift_of_type ty) ^^
G.i (Unary (Wasm_exts.Values.I64 I64Op.Ctz)) ^^
msb_adjust ty
(* Kernel for testing a bit position, according to the word invariant. *)
let btst_kernel env ty =
let (set_b, get_b) = new_local env "b"
in lsb_adjust ty ^^ set_b ^^ lsb_adjust ty ^^
compile_unboxed_one ^^ get_b ^^ clamp_shift_amount ty ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Shl)) ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.And)) ^^
msb_adjust ty
(* Code points occupy 21 bits, so can always be tagged scalars *)
let lsb_adjust_codepoint env = lsb_adjust Type.Char
let msb_adjust_codepoint = msb_adjust Type.Char
(* Checks (n < 0xD800 || 0xE000 ≤ n ≤ 0x10FFFF),
ensuring the codepoint range and the absence of surrogates. *)
let check_and_msb_adjust_codepoint env =
Func.share_code1 Func.Always env "Nat32->Char" ("n", I64Type) [I64Type] (fun env get_n ->
get_n ^^ compile_unboxed_const 0xD800L ^^
compile_comparison I64Op.GeU ^^
get_n ^^ compile_unboxed_const 0xE000L ^^
compile_comparison I64Op.LtU ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.And)) ^^
get_n ^^ compile_unboxed_const 0x10FFFFL ^^
compile_comparison I64Op.GtU ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Or)) ^^
E.then_trap_with env "codepoint out of range" ^^
get_n ^^ msb_adjust_codepoint
)
let vanilla_lit ty v =
Int64.(shift_left (of_int v) (to_int (shift_of_type ty)))
|> Int64.logor (tag_of_type ty)
(* Wrapping implementation for multiplication and exponentiation. *)
let compile_word_mul env ty =
lsb_adjust ty ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Mul))
let compile_nat_power env ty =
let name = prim_fun_name ty "wpow_nat" in
(* Square- and multiply exponentiation *)
Func.share_code2 Func.Always env name (("n", I64Type), ("exp", I64Type)) [I64Type]
(fun env get_n get_exp ->
let set_n = G.setter_for get_n in
let set_exp = G.setter_for get_exp in
let (set_acc, get_acc) = new_local env "acc" in
(* unshift arguments *)
get_exp ^^ compile_shrU_const (shift_of_type ty) ^^ set_exp ^^
get_n ^^ compile_shrU_const (shift_of_type ty) ^^ set_n ^^
(* The accumulator starts with and stays shifted, so no other shifts needed. *)
compile_unboxed_const (const_of_type ty 1L) ^^ set_acc ^^
(* handle exp == 0 *)
get_exp ^^ compile_test I64Op.Eqz ^^
E.if1 I64Type get_acc (* done *)
begin
G.loop0 begin
(* Are we done? *)
get_exp ^^ compile_unboxed_const 1L ^^ compile_comparison I64Op.LeU ^^
E.if0 G.nop (* done *)
begin
(* Check low bit of exp to see if we need to multiply *)
get_exp ^^ compile_shl_const 63L ^^ compile_test I64Op.Eqz ^^
E.if0 G.nop
begin
(* Multiply! *)
get_acc ^^ get_n ^^ G.i (Binary (Wasm_exts.Values.I64 I64Op.Mul)) ^^ set_acc
end ^^
(* Square n, and shift exponent *)
get_n ^^ get_n ^^ G.i (Binary (Wasm_exts.Values.I64 I64Op.Mul)) ^^ set_n ^^
get_exp ^^ compile_shrU_const 1L ^^ set_exp ^^
(* And loop *)
G.i (Br (nr 1l))
end
end ^^
(* Multiply a last time *)
get_acc ^^ get_n ^^ G.i (Binary (Wasm_exts.Values.I64 I64Op.Mul))
(* Accumulator was shifted, so no further shift needed here *)
end
)
let compile_int_power env ty =
let name = prim_fun_name ty "wpow_int" in
Func.share_code2 Func.Never env name (("n", I64Type), ("exp", I64Type)) [I64Type]
(fun env get_n get_exp ->
get_exp ^^
compile_unboxed_const 0L ^^
compile_comparison I64Op.GeS ^^
E.else_trap_with env "negative power" ^^
get_n ^^ get_exp ^^ compile_nat_power env (toNat ty))
(* To rotate, first rotate a copy by bits_of_type into the other direction *)
let rotl env ty =
Func.share_code2 Func.Never env (prim_fun_name ty "rotl") (("n", I64Type), ("by", I64Type)) [I64Type]
(fun env get_n get_by ->
let open Wasm_exts.Values in
let beside_adjust = compile_rotr_const (Int64.of_int (bits_of_type ty)) in
get_n ^^ get_n ^^ beside_adjust ^^ G.i (Binary (I64 I64Op.Or)) ^^
get_by ^^ lsb_adjust ty ^^ clamp_shift_amount ty ^^ G.i (Binary (I64 I64Op.Rotl)) ^^
sanitize_word_result ty
)
let rotr env ty =
Func.share_code2 Func.Never env (prim_fun_name ty "rotr") (("n", I64Type), ("by", I64Type)) [I64Type]
(fun env get_n get_by ->
let open Wasm_exts.Values in
let beside_adjust = compile_rotl_const (Int64.of_int (bits_of_type ty)) in
get_n ^^ get_n ^^ beside_adjust ^^ G.i (Binary (I64 I64Op.Or)) ^^
get_by ^^ lsb_adjust ty ^^ clamp_shift_amount ty ^^ G.i (Binary (I64 I64Op.Rotr)) ^^
sanitize_word_result ty
)
let tag env pty =
match pty with
| Type.(Nat8 | Int8 | Nat16 | Int16 | Nat32 | Int32 | Char) ->
(* TODO: could sanity check low bits clear *)
(* add tag *)
compile_bitor_const (tag_of_type pty)
| _ -> assert false
let untag env pty =
match pty with
| Type.(Nat8 | Int8 | Nat16 | Int16 | Nat32 | Int32 | Char) ->
(* check tag *)
BitTagged.sanity_check_tag __LINE__ env pty ^^
(* clear tag *)
BitTagged.clear_tag env pty
| _ -> assert false
end (* TaggedSmallWord *)
module Float = struct
(* We store floats (C doubles) in immutable boxed 64bit heap objects.
The heap layout of a Float is:
┌──────┬─────┬─────┐
│ obj header │ f64 │
└──────┴─────┴─────┘
For now the tag stored is that of a Bits64, because the payload is
treated opaquely by the RTS. We'll introduce a separate tag when the need of
debug inspection (or GC representation change) arises.
The object header includes the object tag (Bits64) and the forwarding pointer.
*)
let payload_field = Tagged.header_size
let compile_unboxed_const f = G.i (Const (nr (Wasm_exts.Values.F64 f)))
let box env = Func.share_code1 Func.Never env "box_f64" ("f", F64Type) [I64Type] (fun env get_f ->
let (set_i, get_i) = new_local env "boxed_f64" in
let size = Int64.add Tagged.header_size 2L in
Tagged.alloc env size Tagged.(Bits64 F) ^^
set_i ^^
get_i ^^ get_f ^^ Tagged.store_field_float64 env payload_field ^^
get_i ^^
Tagged.allocation_barrier env
)
let unbox env =
Tagged.load_forwarding_pointer env ^^
Tagged.(sanity_check_tag __LINE__ env (Bits64 F)) ^^
Tagged.load_field_float64 env payload_field
let constant env f = Tagged.shared_object env (fun env ->
compile_unboxed_const f ^^
box env)
end (* Float *)
module ReadBuf = struct
(*
Combinators to safely read from a dynamic buffer.
We represent a buffer by a pointer to two words in memory (usually allocated
on the shadow stack): The first is a pointer to the current position of the buffer,
the second one a pointer to the end (to check out-of-bounds).
Code that reads from this buffer will update the former, i.e. it is mutable.
The format is compatible with C (pointer to a struct) and avoids the need for the
multi-value extension that we used before to return both parse result _and_
updated pointer.
All pointers here are unskewed!
This module is mostly for serialization, but because there are bits of
serialization code in the BigNumType implementations, we put it here.
*)
let get_ptr get_buf =
get_buf ^^ G.i (Load {ty = I64Type; align = 3; offset = 0L; sz = None})
let get_end get_buf =
get_buf ^^ G.i (Load {ty = I64Type; align = 3; offset = Heap.word_size; sz = None})
let set_ptr get_buf new_val =
get_buf ^^ new_val ^^ G.i (Store {ty = I64Type; align = 3; offset = 0L; sz = None})
let set_end get_buf new_val =
get_buf ^^ new_val ^^ G.i (Store {ty = I64Type; align = 3; offset = Heap.word_size; sz = None})
let set_size get_buf get_size =
set_end get_buf
(get_ptr get_buf ^^ get_size ^^ G.i (Binary (Wasm_exts.Values.I64 I64Op.Add)))
let alloc env f = Stack.with_words env "buf" 2L f
let advance get_buf get_delta =
set_ptr get_buf (get_ptr get_buf ^^ get_delta ^^ G.i (Binary (Wasm_exts.Values.I64 I64Op.Add)))
let read_leb128 env get_buf =
get_buf ^^ E.call_import env "rts" "leb128_decode"
let read_sleb128 env get_buf =
get_buf ^^ E.call_import env "rts" "sleb128_decode"
let check_space env get_buf get_delta =
get_delta ^^
get_end get_buf ^^ get_ptr get_buf ^^ G.i (Binary (Wasm_exts.Values.I64 I64Op.Sub)) ^^
compile_comparison I64Op.LeU ^^
E.else_trap_with env "IDL error: out of bounds read"
let check_page_end env get_buf incr_delta =
get_ptr get_buf ^^ compile_bitand_const 0xFFFFL ^^
incr_delta ^^
compile_shrU_const 16L
let is_empty env get_buf =
get_end get_buf ^^ get_ptr get_buf ^^
compile_comparison I64Op.Eq
let read_byte env get_buf =
check_space env get_buf (compile_unboxed_const 1L) ^^
get_ptr get_buf ^^
G.i (Load {ty = I32Type; align = 0; offset = 0L; sz = Some Wasm_exts.Types.(Pack8, ZX)}) ^^
G.i (Convert (Wasm_exts.Values.I64 I64Op.ExtendUI32)) ^^
advance get_buf (compile_unboxed_const 1L)
let read_word16 env get_buf =
check_space env get_buf (compile_unboxed_const 2L) ^^
get_ptr get_buf ^^
G.i (Load {ty = I32Type; align = 0; offset = 0L; sz = Some Wasm_exts.Types.(Pack16, ZX)}) ^^
G.i (Convert (Wasm_exts.Values.I64 I64Op.ExtendUI32)) ^^
advance get_buf (compile_unboxed_const 2L)
let read_word32 env get_buf =
check_space env get_buf (compile_unboxed_const 4L) ^^
get_ptr get_buf ^^
G.i (Load {ty = I32Type; align = 0; offset = 0L; sz = None}) ^^
G.i (Convert (Wasm_exts.Values.I64 I64Op.ExtendUI32)) ^^
advance get_buf (compile_unboxed_const 4L)
let read_signed_word32 env get_buf =
check_space env get_buf (compile_unboxed_const 4L) ^^
get_ptr get_buf ^^
G.i (Load {ty = I32Type; align = 0; offset = 0L; sz = None}) ^^
G.i (Convert (Wasm_exts.Values.I64 I64Op.ExtendSI32)) ^^
advance get_buf (compile_unboxed_const 4L)
let speculative_read_word64 env get_buf =
check_page_end env get_buf (compile_add_const 8L) ^^
E.if1 I64Type
(compile_unboxed_const (-1L))
begin
get_ptr get_buf ^^
G.i (Load {ty = I64Type; align = 0; offset = 0L; sz = None})
end
let read_word64 env get_buf =
check_space env get_buf (compile_unboxed_const 8L) ^^
get_ptr get_buf ^^
G.i (Load {ty = I64Type; align = 0; offset = 0L; sz = None}) ^^
advance get_buf (compile_unboxed_const 8L)
let read_float64 env get_buf =
check_space env get_buf (compile_unboxed_const 8L) ^^
get_ptr get_buf ^^
G.i (Load {ty = F64Type; align = 0; offset = 0L; sz = None}) ^^
advance get_buf (compile_unboxed_const 8L)
let read_blob env get_buf get_len =
check_space env get_buf get_len ^^
(* Already has destination address on the stack *)
get_ptr get_buf ^^
get_len ^^
Heap.memcpy env ^^
advance get_buf get_len
end (* Buf *)
type comparator = Lt | Le | Ge | Gt
module type BigNumType =
sig
(* word from SR.Vanilla, trapping, unsigned semantics *)
val to_word64 : E.t -> G.t
val to_word64_with : E.t -> G.t -> G.t (* with error message on stack (ptr/len) *)
(* word from SR.Vanilla, lossy, raw bits *)
val truncate_to_word32 : E.t -> G.t
val truncate_to_word64 : E.t -> G.t
(* unsigned word to SR.Vanilla *)
val from_word64 : E.t -> G.t
(* signed word to SR.Vanilla *)
val from_signed_word_compact : E.t -> G.t
val from_signed_word64 : E.t -> G.t
(* buffers *)
(* given a numeric object on stack (vanilla),
push the number (i64) of bytes necessary
to externalize the numeric object *)
val compile_data_size_signed : E.t -> G.t
val compile_data_size_unsigned : E.t -> G.t
(* given on stack
- numeric object (vanilla, TOS)
- data buffer
store the binary representation of the numeric object into the data buffer,
and push the number (i64) of bytes stored onto the stack
*)
val compile_store_to_data_buf_signed : E.t -> G.t
val compile_store_to_data_buf_unsigned : E.t -> G.t
(* given a ReadBuf on stack, consume bytes from it,
deserializing to a numeric object
and leave it on the stack (vanilla).
The boolean argument is true if the value to be read is signed.
*)
val compile_load_from_data_buf : E.t -> G.t -> bool -> G.t
(* constant *)
val constant : E.t -> Big_int.big_int -> E.shared_value
(* arithmetic *)
val compile_abs : E.t -> G.t
val compile_neg : E.t -> G.t
val compile_add : E.t -> G.t
val compile_signed_sub : E.t -> G.t
val compile_unsigned_sub : E.t -> G.t
val compile_mul : E.t -> G.t
val compile_signed_div : E.t -> G.t
val compile_signed_mod : E.t -> G.t
val compile_unsigned_div : E.t -> G.t
val compile_unsigned_rem : E.t -> G.t
val compile_unsigned_pow : E.t -> G.t
val compile_lsh : E.t -> G.t
val compile_rsh : E.t -> G.t
(* comparisons *)
val compile_eq : E.t -> G.t
val compile_is_negative : E.t -> G.t
val compile_relop : E.t -> comparator -> G.t
(* representation checks *)
(* given a numeric object on the stack as skewed pointer, check whether
it can be faithfully stored in N bits, including a leading sign bit
leaves boolean result on the stack
N must be 2..64
*)
val fits_signed_bits : E.t -> int -> G.t
(* given a numeric object on the stack as skewed pointer, check whether
it can be faithfully stored in N unsigned bits
leaves boolean result on the stack
N must be 1..64
*)
val fits_unsigned_bits : E.t -> int -> G.t
end
let i64op_from_relop = function
| Lt -> I64Op.LtS
| Le -> I64Op.LeS
| Ge -> I64Op.GeS
| Gt -> I64Op.GtS
let name_from_relop = function
| Lt -> "B_lt"
| Le -> "B_le"
| Ge -> "B_ge"
| Gt -> "B_gt"
(* helper, measures the dynamics of the unsigned i64, returns (64 - effective bits) *)
let unsigned_dynamics get_x =
get_x ^^
G.i (Unary (Wasm_exts.Values.I64 I64Op.Clz))
(* helper, measures the dynamics of the signed i64, returns (64 - effective bits) *)
let signed_dynamics get_x =
get_x ^^ compile_shl_const 1L ^^
get_x ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Xor)) ^^
G.i (Unary (Wasm_exts.Values.I64 I64Op.Clz))
module I32Leb = struct
let compile_size dynamics get_x =
get_x ^^ Bool.from_int64 ^^
E.if1 I64Type
begin
(* Add (7-1) to prepare division by 7 that is rounded up *)
compile_unboxed_const (Int64.of_int (Int.add 64 (Int.sub 7 1))) ^^
dynamics get_x ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Sub)) ^^
compile_divU_const 7L
end
(compile_unboxed_const 1L)
let compile_leb128_size get_x = compile_size unsigned_dynamics get_x
let compile_sleb128_size get_x = compile_size signed_dynamics get_x
let compile_store_to_data_buf_unsigned env get_x get_buf =
get_x ^^ get_buf ^^
E.call_import env "rts" "leb128_encode" ^^
compile_leb128_size get_x
let compile_store_to_data_buf_signed env get_x get_buf =
get_x ^^ get_buf ^^
E.call_import env "rts" "sleb128_encode" ^^
compile_sleb128_size get_x
end
module MakeCompact (Num : BigNumType) : BigNumType = struct
(* Compact BigNums are a representation of signed BitTagged.ubit-bignums (of the
underlying boxed representation `Num`), that fit into an i64 as per the
BitTagged representation.
Many arithmetic operations can be be performed on this right-zero-padded
representation directly. For some operations (e.g. multiplication) the
second argument needs to be furthermore right-shifted to avoid overflow.
Similarly, for division the result must be left-shifted.
Generally all operations begin with checking whether both arguments are
already tagged scalars. If so, the arithmetic can be performed in machine
registers (fast path). Otherwise one or both arguments need boxing and the
arithmetic needs to be carried out on the underlying boxed bignum
representation (slow path).
The result appears as a boxed number in the latter case, so a check is
performed if it can be a tagged scalar. Conversely in the former case the
64-bit result can either be a tagged scalar or needs to be boxed.
Manipulation of the result is unnecessary for the comparison predicates.
For the `pow` operation the check that both arguments are tagged scalars
is not sufficient. Here we count and multiply effective bitwidths to
figure out whether the operation will overflow 64 bits, and if so, we fall
back to the slow path.
*)
(* TODO: There is some unnecessary result shifting when the div result needs
to be boxed. Is this possible at all to happen? With (/-1) maybe! *)
(* TODO: Does the result of the rem/mod fast path ever needs boxing? *)
(* examine the skewed pointer and determine if number fits into ubits *)
let fits_in_vanilla env = Num.fits_signed_bits env (BitTagged.ubits_of Type.Int)
let clear_tag env = BitTagged.clear_tag env Type.Int
(* A variant of BitTagged.can_tag that works on signed i64 *)
let if_can_tag env retty is1 is2 =
let ubitsL = Int64.of_int(BitTagged.ubits_of Type.Int) in
compile_shrS_const (Int64.sub 64L ubitsL) ^^ BitTagged.if_can_tag_signed env Type.Int retty is1 is2
let apply_tag env =
compile_bitor_const (TaggingScheme.tag_of_typ Type.Int)
let can_use_fath_path env get_a get_b =
(* Check whether both arguments `a` and `b` are scalars that fit within 32 bit.
This is to guarantee overflow-free 64-bit arithmetics, such as `add`, `sub`, or `mul`.
However, this does not work for `pow` as it can overflow for smaller arguments. *)
(* check with a combined bit mask that:
- (and `0x1`) Both arguments are scalars, none a skewed pointers
- (and `0xFFFF_FFFF_0000_0000`) Both arguments fit in 32-bit
TODO: Precise tag for Int has 2 bits ->
Check if we could permit one or two more bits in the `0xFFFF_FFFF_0000_0000` bit mask. *)
get_a ^^ get_b ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Or)) ^^
compile_bitand_const 0xFFFF_FFFF_0000_0001L ^^
compile_eq_const 0x0L
(* creates a boxed bignum from a signed i64 *)
let box env =
let ubitsL = Int64.of_int(BitTagged.ubits_of Type.Int) in
compile_shrS_const (Int64.sub 64L ubitsL) ^^ Num.from_signed_word64 env
(* check if both arguments are tagged scalars,
if so, perform the fast path.
Otherwise make sure that both arguments are in heap representation,
and run the slow path on them.
In both cases bring the results into normal form.
*)
let try_unbox2 name fast slow env =
Func.share_code2 Func.Always env name (("a", I64Type), ("b", I64Type)) [I64Type]
(fun env get_a get_b ->
let set_res, get_res = new_local env "res" in
can_use_fath_path env get_a get_b ^^
E.if1 I64Type
begin
get_a ^^ clear_tag env ^^
get_b ^^ clear_tag env ^^
fast env ^^ set_res ^^
get_res ^^
if_can_tag env [I64Type]
(get_res ^^ apply_tag env)
(get_res ^^ box env)
end
begin
get_a ^^ BitTagged.if_tagged_scalar env [I64Type]
(get_a ^^ box env)
get_a ^^
get_b ^^ BitTagged.if_tagged_scalar env [I64Type]
(get_b ^^ box env)
get_b ^^
slow env ^^ set_res ^^ get_res ^^
fits_in_vanilla env ^^
E.if1 I64Type
(get_res ^^ Num.truncate_to_word64 env ^^ BitTagged.tag env Type.Int)
get_res
end
)
let compile_add = try_unbox2 "B_add" Word64.compile_add Num.compile_add
let adjust_arg2 code env =
compile_shrS_const (Int64.of_int (64 - BitTagged.ubits_of Type.Int)) ^^
code env (* TBR *)
let adjust_result code env =
code env ^^
compile_shl_const (Int64.of_int (64 - BitTagged.ubits_of Type.Int))
let compile_mul = try_unbox2 "B_mul" (adjust_arg2 Word64.compile_mul) Num.compile_mul
let compile_signed_sub = try_unbox2 "B+sub" Word64.compile_signed_sub Num.compile_signed_sub
let compile_signed_div = try_unbox2 "B+div" (adjust_result Word64.compile_signed_div) Num.compile_signed_div
let compile_signed_mod = try_unbox2 "B_mod" Word64.compile_signed_mod Num.compile_signed_mod
let compile_unsigned_div = try_unbox2 "B_div" (adjust_result Word64.compile_unsigned_div) Num.compile_unsigned_div
let compile_unsigned_rem = try_unbox2 "B_rem" Word64.compile_unsigned_rem Num.compile_unsigned_rem
let compile_unsigned_sub = try_unbox2 "B_sub" Word64.compile_unsigned_sub Num.compile_unsigned_sub
let compile_unsigned_pow env =
Func.share_code2 Func.Always env "B_pow" (("a", I64Type), ("b", I64Type)) [I64Type]
(fun env get_a get_b ->
let set_res, get_res = new_local env "res" in
get_a ^^ get_b ^^
BitTagged.if_both_tagged_scalar env [I64Type]
begin
let set_a = G.setter_for get_a in
let set_b = G.setter_for get_b in
(* Convert to plain Word64 *)
get_a ^^ BitTagged.untag __LINE__ env Type.Int ^^ set_a ^^
get_b ^^ BitTagged.untag __LINE__ env Type.Int ^^ set_b ^^
get_a ^^ Num.from_signed_word64 env ^^
get_b ^^ Num.from_signed_word64 env ^^
Num.compile_unsigned_pow env ^^ set_res ^^
get_res ^^ fits_in_vanilla env ^^
E.if1 I64Type
(get_res ^^ Num.truncate_to_word64 env ^^ BitTagged.tag env Type.Int)
get_res
end
begin
get_a ^^ BitTagged.if_tagged_scalar env [I64Type]
(get_a ^^ box env)
get_a ^^
get_b ^^ BitTagged.if_tagged_scalar env [I64Type]
(get_b ^^ box env)
get_b ^^
Num.compile_unsigned_pow env ^^ set_res ^^
get_res ^^ fits_in_vanilla env ^^
E.if1 I64Type
(get_res ^^ Num.truncate_to_word64 env ^^ BitTagged.tag env Type.Int)
get_res
end)
(*
Note [left shifting compact Nat]
For compact Nats with a number fitting in 32 bits (in scalar value representation) and a shift amount of
less or equal 32, we perform a fast shift. Otherwise, the bignum shift via RTS is applied.
*)
let compile_lsh env =
Func.share_code2 Func.Always env "B_lsh" (("n", I64Type), ("amount", I64Type)) [I64Type]
(fun env get_n get_amount ->
let set_n = G.setter_for get_n in
get_amount ^^ TaggedSmallWord.lsb_adjust Type.Nat32 ^^ G.setter_for get_amount ^^
get_n ^^
BitTagged.if_tagged_scalar env [I64Type]
begin
(* see Note [left shifting compact Nat] *)
get_n ^^ BitTagged.untag __LINE__ env Type.Int ^^ set_n ^^
get_n ^^
compile_bitand_const 0xFFFF_FFFF_0000_0000L ^^
compile_eq_const 0L ^^
get_amount ^^ compile_rel_const I64Op.LeU 32L ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.And)) ^^
E.if1 I64Type
begin
get_n ^^
get_amount ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Shl)) ^^
BitTagged.tag env Type.Int
end
begin
get_n ^^ Num.from_word64 env ^^
get_amount ^^
Num.compile_lsh env
end
end
begin
get_n ^^ get_amount ^^ Num.compile_lsh env
end)
let compile_rsh env =
Func.share_code2 Func.Always env "B_rsh" (("n", I64Type), ("amount", I64Type)) [I64Type]
(fun env get_n get_amount ->
get_amount ^^ TaggedSmallWord.lsb_adjust Type.Nat32 ^^ G.setter_for get_amount ^^
get_n ^^
BitTagged.if_tagged_scalar env [I64Type]
begin
get_n ^^ clear_tag env ^^
get_amount ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.ShrU)) ^^
compile_bitand_const Int64.(shift_left minus_one (64 - BitTagged.ubits_of Type.Int)) ^^
get_amount ^^ compile_rel_const I64Op.LeU (Int64.of_int (BitTagged.ubits_of Type.Int))^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Mul)) (* branch-free `if` *) ^^
(* tag *)
apply_tag env
end
begin
get_n ^^ get_amount ^^ Num.compile_rsh env ^^
let set_res, get_res = new_local env "res" in
set_res ^^ get_res ^^
fits_in_vanilla env ^^
E.if1 I64Type
(get_res ^^ Num.truncate_to_word64 env ^^ BitTagged.tag env Type.Int)
get_res
end)
let compile_is_negative env =
let set_n, get_n = new_local env "n" in
set_n ^^ get_n ^^
BitTagged.if_tagged_scalar env [I64Type]
(get_n ^^ clear_tag env ^^ compile_unboxed_const 0L ^^ compile_comparison I64Op.LtS)
(get_n ^^ Num.compile_is_negative env)
let constant env = function
| n when Big_int.is_int_big_int n && BitTagged.can_tag_const Type.Int (Big_int.int64_of_big_int n) ->
E.Vanilla (BitTagged.tag_const Type.Int (Big_int.int64_of_big_int n))
| n -> Num.constant env n
let compile_neg env =
let sminl = Int64.shift_left 1L (BitTagged.sbits_of Type.Int) in
let sminl_shifted = Int64.shift_left sminl (64 - BitTagged.ubits_of Type.Int) in
Func.share_code1 Func.Always env "B_neg" ("n", I64Type) [I64Type] (fun env get_n ->
get_n ^^ BitTagged.if_tagged_scalar env [I64Type]
begin
get_n ^^ clear_tag env ^^ compile_eq_const sminl_shifted ^^ (* -2^sbits, shifted ubits *)
E.if1 I64Type
(compile_unboxed_const sminl ^^ Num.from_word64 env)
begin
compile_unboxed_const 0L ^^
get_n ^^ clear_tag env ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Sub)) ^^
(* tag the result *)
clear_tag env ^^
apply_tag env
end
end
(get_n ^^ Num.compile_neg env)
)
let try_comp_unbox2 name fast slow env =
Func.share_code2 Func.Always env name (("a", I64Type), ("b", I64Type)) [I64Type]
(fun env get_a get_b ->
get_a ^^ get_b ^^
BitTagged.if_both_tagged_scalar env [I64Type]
begin
get_a ^^ clear_tag env ^^
get_b ^^ clear_tag env ^^
fast env
end
begin
get_a ^^ BitTagged.if_tagged_scalar env [I64Type]
(get_a ^^ box env)
get_a ^^
get_b ^^ BitTagged.if_tagged_scalar env [I64Type]
(get_b ^^ box env)
get_b ^^
slow env
end)
let compile_eq env =
Func.share_code2 Func.Always env "B_eq" (("a", I64Type), ("b", I64Type)) [I64Type]
(fun env get_a get_b ->
get_a ^^ get_b ^^
compile_comparison I64Op.Eq ^^
E.if1 I64Type
(Bool.lit true)
(get_a ^^ get_b ^^
BitTagged.if_both_tagged_scalar env [I64Type]
(Bool.lit false)
begin
get_a ^^ BitTagged.if_tagged_scalar env [I64Type]
(get_a ^^ box env)
get_a ^^
get_b ^^ BitTagged.if_tagged_scalar env [I64Type]
(get_b ^^ box env)
get_b ^^
Num.compile_eq env
end))
let compile_relop env bigintop =
try_comp_unbox2 (name_from_relop bigintop)
(fun env' -> Word64.compile_relop env' (i64op_from_relop bigintop))
(fun env' -> Num.compile_relop env' bigintop)
env
let try_unbox iN fast slow env =
let set_a, get_a = new_local env "a" in
set_a ^^ get_a ^^
BitTagged.if_tagged_scalar env [iN]
(get_a ^^ fast env)
(get_a ^^ slow env)
let fits_unsigned_bits env n =
try_unbox I64Type (fun _ -> match n with
| 64 -> G.i Drop ^^ Bool.lit true
| 8 | 16 | 32 ->
(* use shifting to test that the payload including the tag fits the desired bit width.
E.g. this is now n + 2 for Type.Int. *)
compile_bitand_const Int64.(shift_left minus_one (n + (64 - BitTagged.ubits_of Type.Int))) ^^
compile_test I64Op.Eqz
| _ -> assert false
)
(fun env -> Num.fits_unsigned_bits env n)
env
let sanity_check_fits_signed_bits env n get_a =
if TaggingScheme.debug || !Flags.sanity then
get_a ^^
Func.share_code2 Func.Always env ("check_fits_signed_bits_"^Int.to_string n) (("res", I64Type), ("a", I64Type)) [I64Type]
(fun env get_res get_a ->
let lower_bound = Int64.(neg (shift_left 1L (n-1))) in
let upper_bound = Int64.shift_left 1L (n-1) in
let set_a = G.setter_for get_a in
get_a ^^
compile_shrS_const (Int64.of_int (64 - BitTagged.ubits_of Type.Int)) ^^
set_a ^^
compile_unboxed_const lower_bound ^^
get_a ^^
compile_comparison I64Op.LeS ^^
get_a ^^ compile_unboxed_const upper_bound ^^
compile_comparison I64Op.LtS ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.And)) ^^
get_res ^^
compile_comparison I64Op.Eq ^^
E.else_trap_with env ("fit_signed_bits failure_"^Int.to_string n) ^^
get_res)
else G.nop
let fits_signed_bits env n =
let set_a, get_a = new_local env "a" in
try_unbox I64Type (fun _ -> match n with
| 64 -> G.i Drop ^^ Bool.lit true
| 8 | 16 | 32 ->
set_a ^^
get_a ^^ get_a ^^ compile_shrS_const 1L ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Xor)) ^^
compile_bitand_const
Int64.(shift_left minus_one ((n-1) + (64 - BitTagged.ubits_of Type.Int))) ^^
compile_test I64Op.Eqz ^^
sanity_check_fits_signed_bits env n get_a
| _ -> assert false
)
(fun env -> Num.fits_signed_bits env n)
env
let compile_abs env =
let sminl = Int64.shift_left 1L (BitTagged.sbits_of Type.Int) in
let sminl_shifted = Int64.shift_left sminl (64 - BitTagged.ubits_of Type.Int) in
try_unbox I64Type
begin
fun _ ->
let set_a, get_a = new_local env "a" in
clear_tag env ^^
set_a ^^
get_a ^^ compile_unboxed_const 0L ^^ compile_comparison I64Op.LtS ^^
E.if1 I64Type
begin
get_a ^^
(* -2^sbits is small enough for compact representation, but 2^sbits isn't *)
compile_eq_const sminl_shifted ^^ (* i.e. -2^sbits shifted *)
E.if1 I64Type
(compile_unboxed_const sminl ^^ Num.from_word64 env)
begin
(* absolute value works directly on shifted representation *)
compile_unboxed_const 0L ^^
get_a ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Sub)) ^^
apply_tag env
end
end
begin
get_a ^^
compile_bitor_const (TaggingScheme.tag_of_typ Type.Int)
end
end
Num.compile_abs
env
let compile_load_from_word64 env get_data_buf = function
| false -> get_data_buf ^^ E.call_import env "rts" "bigint_leb128_decode_word64"
| true -> get_data_buf ^^ E.call_import env "rts" "bigint_sleb128_decode_word64"
let compile_load_from_data_buf env get_data_buf signed =
(* see Note [speculating for short (S)LEB encoded bignums] *)
ReadBuf.speculative_read_word64 env get_data_buf ^^
let set_a, get_a = new_local env "a" in
set_a ^^ get_a ^^
compile_xor_const (-1L) ^^
compile_bitand_const 0x8080_8080_8080_8080L ^^
let set_eom, get_eom = new_local env "eom" in
set_eom ^^ get_eom ^^
compile_test I64Op.Eqz ^^
E.if1 I64Type
begin
Num.compile_load_from_data_buf env get_data_buf signed
end
begin
get_a ^^
get_eom ^^ G.i (Unary (Wasm_exts.Values.I64 I64Op.Ctz)) ^^
compile_load_from_word64 env get_data_buf signed
end
let compile_store_to_data_buf_unsigned env =
let set_x, get_x = new_local env "x" in
let set_buf, get_buf = new_local env "buf" in
set_x ^^ set_buf ^^
get_x ^^
try_unbox I64Type
(fun env ->
BitTagged.untag __LINE__ env Type.Int ^^ set_x ^^
I32Leb.compile_store_to_data_buf_unsigned env get_x get_buf
)
(fun env ->
G.i Drop ^^
get_buf ^^ get_x ^^ Num.compile_store_to_data_buf_unsigned env)
env
let compile_store_to_data_buf_signed env =
let set_x, get_x = new_local env "x" in
let set_buf, get_buf = new_local env "buf" in
set_x ^^ set_buf ^^
get_x ^^
try_unbox I64Type
(fun env ->
BitTagged.untag __LINE__ env Type.Int ^^ set_x ^^
I32Leb.compile_store_to_data_buf_signed env get_x get_buf
)
(fun env ->
G.i Drop ^^
get_buf ^^ get_x ^^ Num.compile_store_to_data_buf_signed env)
env
let compile_data_size_unsigned env =
try_unbox I64Type
(fun _ ->
let set_x, get_x = new_local env "x" in
BitTagged.untag __LINE__ env Type.Int ^^ set_x ^^
I32Leb.compile_leb128_size get_x
)
(fun env -> Num.compile_data_size_unsigned env)
env
let compile_data_size_signed env =
try_unbox I64Type
(fun _ ->
let set_x, get_x = new_local env "x" in
BitTagged.untag __LINE__ env Type.Int ^^ set_x ^^
I32Leb.compile_sleb128_size get_x
)
(fun env -> Num.compile_data_size_signed env)
env
let from_signed_word64 env =
let set_a, get_a = new_local env "a" in
set_a ^^
get_a ^^ BitTagged.if_can_tag_signed env Type.Int [I64Type]
(get_a ^^ BitTagged.tag env Type.Int)
(get_a ^^ Num.from_signed_word64 env)
let from_signed_word_compact env =
begin
if TaggingScheme.debug || !(Flags.sanity)
then
let set_a, get_a = new_local env "a" in
set_a ^^
get_a ^^ BitTagged.if_can_tag_signed env Type.Int [I64Type]
get_a
(E.trap_with env "from_signed_word_compact")
else G.nop
end ^^
BitTagged.tag env Type.Int
let from_word64 env =
let set_a, get_a = new_local env "a" in
set_a ^^
get_a ^^ BitTagged.if_can_tag_unsigned env Type.Int [I64Type]
(get_a ^^ BitTagged.tag env Type.Int)
(get_a ^^ Num.from_word64 env)
let truncate_to_word64 env =
let set_a, get_a = new_local env "a" in
set_a ^^ get_a ^^
BitTagged.if_tagged_scalar env [I64Type]
(get_a ^^ BitTagged.untag __LINE__ env Type.Int)
(get_a ^^ Num.truncate_to_word64 env)
let truncate_to_word32 env =
let set_a, get_a = new_local env "a" in
set_a ^^ get_a ^^
BitTagged.if_tagged_scalar env [I64Type]
(get_a ^^ BitTagged.untag __LINE__ env Type.Int)
(get_a ^^ Num.truncate_to_word32 env)
let to_word64 env =
let set_a, get_a = new_local env "a" in
set_a ^^ get_a ^^
BitTagged.if_tagged_scalar env [I64Type]
(get_a ^^ BitTagged.untag __LINE__ env Type.Int)
(get_a ^^ Num.to_word64 env)
let to_word64_with env get_err_msg =
let set_a, get_a = new_local env "a" in
set_a ^^ get_a ^^
BitTagged.if_tagged_scalar env [I64Type]
(get_a ^^ BitTagged.untag __LINE__ env Type.Int)
(get_a ^^ Num.to_word64_with env get_err_msg)
end
module BigNumLibtommath : BigNumType = struct
let to_word64 env = E.call_import env "rts" "bigint_to_word64_trap"
let to_word64_with env get_err_msg = get_err_msg ^^ E.call_import env "rts" "bigint_to_word64_trap_with"
let truncate_to_word32 env = E.call_import env "rts" "bigint_to_word32_wrap" ^^ G.i (Convert (Wasm_exts.Values.I64 I64Op.ExtendUI32))
let truncate_to_word64 env = E.call_import env "rts" "bigint_to_word64_wrap"
let from_signed_word_compact env = E.call_import env "rts" "bigint_of_int64"
let from_word64 env = E.call_import env "rts" "bigint_of_word64"
let from_signed_word64 env = E.call_import env "rts" "bigint_of_int64"
let compile_data_size_unsigned env = E.call_import env "rts" "bigint_leb128_size"
let compile_data_size_signed env = E.call_import env "rts" "bigint_sleb128_size"
let compile_store_to_data_buf_unsigned env =
let (set_buf, get_buf) = new_local env "buf" in
let (set_n, get_n) = new_local env "n" in
set_n ^^ set_buf ^^
get_n ^^ get_buf ^^ E.call_import env "rts" "bigint_leb128_encode" ^^
get_n ^^ E.call_import env "rts" "bigint_leb128_size"
let compile_store_to_data_buf_signed env =
let (set_buf, get_buf) = new_local env "buf" in
let (set_n, get_n) = new_local env "n" in
set_n ^^ set_buf ^^
get_n ^^ get_buf ^^ E.call_import env "rts" "bigint_sleb128_encode" ^^
get_n ^^ E.call_import env "rts" "bigint_sleb128_size"
let compile_load_from_data_buf env get_data_buf = function
| false -> get_data_buf ^^ E.call_import env "rts" "bigint_leb128_decode"
| true -> get_data_buf ^^ E.call_import env "rts" "bigint_sleb128_decode"
let constant env n =
(* See enum mp_sign *)
let sign = if Big_int.sign_big_int n >= 0 then 0l else 1l in
let n = Big_int.abs_big_int n in
let limbs =
(* see MP_DIGIT_BIT for MP_64BIT *)
let twoto60 = Big_int.power_int_positive_int 2 60 in
let rec go n =
if Big_int.sign_big_int n = 0
then []
else
let (a, b) = Big_int.quomod_big_int n twoto60 in
StaticBytes.[ I64 (Big_int.int64_of_big_int b) ] @ go a
in go n
in
(* how many 64 bit digits *)
let size = Int32.of_int (List.length limbs) in
(* cf. mp_int in tommath.h *)
(* Tom's math library is compiled with 64-bit `mp_digit` size. *)
let payload = StaticBytes.[
I32 size; (* used *)
I32 size; (* size; relying on Heap.word_size == size_of(mp_digit) *)
I32 sign;
I32 0l; (* padding because of 64-bit alignment of subsequent pointer *)
I64 0L; (* dp; this will be patched in BigInt::mp_int_ptr in the RTS when used *)
] @ limbs
in
Tagged.shared_object env (fun env ->
let instructions =
let words = StaticBytes.as_words payload in
List.map compile_unboxed_const words in
Tagged.obj env Tagged.BigInt instructions
)
let assert_nonneg env =
Func.share_code1 Func.Never env "assert_nonneg" ("n", I64Type) [I64Type] (fun env get_n ->
get_n ^^
E.call_import env "rts" "bigint_isneg" ^^ Bool.from_rts_int32 ^^
E.then_trap_with env "Natural subtraction underflow" ^^
get_n
)
let compile_abs env = E.call_import env "rts" "bigint_abs"
let compile_neg env = E.call_import env "rts" "bigint_neg"
let compile_add env = E.call_import env "rts" "bigint_add"
let compile_mul env = E.call_import env "rts" "bigint_mul"
let compile_signed_sub env = E.call_import env "rts" "bigint_sub"
let compile_signed_div env = E.call_import env "rts" "bigint_div"
let compile_signed_mod env = E.call_import env "rts" "bigint_rem"
let compile_unsigned_sub env = E.call_import env "rts" "bigint_sub" ^^ assert_nonneg env
let compile_unsigned_rem env = E.call_import env "rts" "bigint_rem"
let compile_unsigned_div env = E.call_import env "rts" "bigint_div"
let compile_unsigned_pow env = E.call_import env "rts" "bigint_pow"
let compile_lsh env = E.call_import env "rts" "bigint_lsh"
let compile_rsh env = E.call_import env "rts" "bigint_rsh"
let compile_eq env = E.call_import env "rts" "bigint_eq" ^^ Bool.from_rts_int32
let compile_is_negative env = E.call_import env "rts" "bigint_isneg" ^^ Bool.from_rts_int32
let compile_relop env = function
| Lt -> E.call_import env "rts" "bigint_lt" ^^ Bool.from_rts_int32
| Le -> E.call_import env "rts" "bigint_le" ^^ Bool.from_rts_int32
| Ge -> E.call_import env "rts" "bigint_ge" ^^ Bool.from_rts_int32
| Gt -> E.call_import env "rts" "bigint_gt" ^^ Bool.from_rts_int32
let fits_signed_bits env bits =
E.call_import env "rts" "bigint_2complement_bits" ^^
compile_unboxed_const (Int64.of_int bits) ^^
compile_comparison I64Op.LeU
let fits_unsigned_bits env bits =
E.call_import env "rts" "bigint_count_bits" ^^
compile_unboxed_const (Int64.of_int bits) ^^
compile_comparison I64Op.LeU
end (* BigNumLibtommath *)
module BigNum = MakeCompact(BigNumLibtommath)
(* Primitive functions *)
module Prim = struct
(* The {Nat,Int}{8,16,32} bits sit in the MSBs of the i64, in this manner
we can perform almost all operations, with the exception of
- Mul (needs shr of one operand)
- Shr (needs masking of result)
- Rot (needs duplication into LSBs, masking of amount and masking of result)
- ctz (needs shr of operand or sub from result)
Both {Nat,Int}{8,16,32} fit into the vanilla stackrep, so no boxing is necessary.
This MSB-stored schema is also essentially what the interpreter is using.
*)
let prim_word64toNat = BigNum.from_word64
let prim_shiftWordNtoUnsigned env b =
compile_shrU_const b ^^
prim_word64toNat env
let prim_word64toInt = BigNum.from_signed_word64
let prim_shiftWordNtoSigned env b =
compile_shrS_const b ^^
prim_word64toInt env
let prim_intToWord64 = BigNum.truncate_to_word64
let prim_intToWordNShifted env b =
prim_intToWord64 env ^^
TaggedSmallWord.shift_leftWordNtoI64 b
end (* Prim *)
module Blob = struct
(* The layout of a blob object is
┌──────┬─────┬─────────┬──────────────────┐
│ obj header │ n_bytes │ bytes (padded) … │
└──────┴─────┴─────────┴──────────────────┘
The object header includes the object tag (Blob) and the forwarding pointer.
This heap object is used for various kinds of binary, non-pointer data.
When used for Text values, the bytes are UTF-8 encoded code points from
Unicode.
*)
let header_size = Int64.add Tagged.header_size 1L
let len_field = Int64.add Tagged.header_size 0L
let len env =
Tagged.load_forwarding_pointer env ^^
Tagged.load_field env len_field
let len_nat env =
Func.share_code1 Func.Never env "blob_len" ("text", I64Type) [I64Type] (fun env get ->
get ^^
len env ^^
BigNum.from_word64 env
)
let alloc env sort len =
compile_unboxed_const Tagged.(int_of_tag (Blob sort)) ^^
len ^^
E.call_import env "rts" "alloc_blob" ^^
(* uninitialized blob payload is allowed by the barrier *)
Tagged.allocation_barrier env
let unskewed_payload_offset env = Int64.(add ptr_unskew (mul Heap.word_size header_size))
let payload_ptr_unskewed env =
Tagged.load_forwarding_pointer env ^^
compile_add_const (unskewed_payload_offset env)
let load_data_segment env sort segment_index data_length =
let (set_blob, get_blob) = new_local env "data_segment_blob" in
alloc env sort data_length ^^ set_blob ^^
get_blob ^^ payload_ptr_unskewed env ^^ (* target address *)
compile_const_32 0l ^^ (* data offset *)
data_length ^^ G.i (Convert (Wasm_exts.Values.I32 I32Op.WrapI64)) ^^
G.i (MemoryInit (nr segment_index)) ^^
get_blob
let constant env sort payload =
Tagged.shared_object env (fun env ->
let blob_length = Int64.of_int (String.length payload) in
let segment_index = E.add_static env StaticBytes.[Bytes payload] in
load_data_segment env sort segment_index (compile_unboxed_const blob_length)
)
let lit env sort payload =
Tagged.materialize_shared_value env (constant env sort payload)
let as_ptr_len env = Func.share_code1 Func.Never env "as_ptr_size" ("x", I64Type) [I64Type; I64Type] (
fun env get_x ->
get_x ^^ payload_ptr_unskewed env ^^
get_x ^^ len env
)
let lit_ptr_len env sort s =
lit env sort s ^^
as_ptr_len env
let load_data_segment env sort segment_index data_length =
let (set_blob, get_blob) = new_local env "data_segment_blob" in
alloc env sort data_length ^^ set_blob ^^
get_blob ^^ payload_ptr_unskewed env ^^ (* target address *)
compile_const_32 0l ^^ (* data offset *)
data_length ^^ G.i (Convert (Wasm_exts.Values.I32 I32Op.WrapI64)) ^^
G.i (MemoryInit (nr segment_index)) ^^
get_blob
let of_ptr_size env = Func.share_code2 Func.Always env "blob_of_ptr_size" (("ptr", I64Type), ("size" , I64Type)) [I64Type] (
fun env get_ptr get_size ->
let (set_x, get_x) = new_local env "x" in
alloc env Tagged.B get_size ^^ set_x ^^
get_x ^^ payload_ptr_unskewed env ^^
get_ptr ^^
get_size ^^
Heap.memcpy env ^^
get_x
)
let copy env src_sort dst_sort =
let name = Printf.sprintf "blob_copy_%s_%s"
(Int64.to_string (Tagged.int_of_tag (Tagged.Blob src_sort)))
(Int64.to_string (Tagged.int_of_tag (Tagged.Blob dst_sort)))
in
Func.share_code1 Func.Never env name ("src", I64Type) [I64Type] (
fun env get_src ->
let (set_dst, get_dst) = new_local env "dst" in
alloc env dst_sort (get_src ^^ len env) ^^ set_dst ^^
get_dst ^^ payload_ptr_unskewed env ^^
get_src ^^ Tagged.sanity_check_tag __LINE__ env (Tagged.Blob src_sort) ^^
as_ptr_len env ^^
Heap.memcpy env ^^
get_dst
)
let of_size_copy env sort get_size_fun copy_fun offset_fun =
let (set_len, get_len) = new_local env "len" in
let (set_blob, get_blob) = new_local env "blob" in
get_size_fun env ^^ set_len ^^
alloc env sort get_len ^^ set_blob ^^
get_blob ^^ payload_ptr_unskewed env ^^
offset_fun env ^^
get_len ^^
copy_fun env ^^
get_blob
(* Lexicographic blob comparison. Expects two blobs on the stack.
Either specialized to a specific comparison operator, and returns a boolean,
or implements the generic comparison, returning -1, 0 or 1 as Int64.
*)
let rec compare env op =
(* return convention for the generic comparison function *)
let is_lt = compile_unboxed_const (-1L) in
let is_gt = compile_unboxed_const 1L in
let is_eq = compile_unboxed_const 0L in
let open Operator in
let name = match op with
| Some LtOp -> "Blob.compare_lt"
| Some LeOp -> "Blob.compare_le"
| Some GeOp -> "Blob.compare_ge"
| Some GtOp -> "Blob.compare_gt"
| Some EqOp -> "Blob.compare_eq"
| Some NeqOp -> "Blob.compare_neq"
| None -> "Blob.compare" in
Func.share_code2 Func.Always env name (("x", I64Type), ("y", I64Type)) [I64Type] (fun env get_x get_y ->
match op with
(* Some operators can be reduced to the negation of other operators *)
| Some LtOp -> get_x ^^ get_y ^^ compare env (Some GeOp) ^^ Bool.neg
| Some GtOp -> get_x ^^ get_y ^^ compare env (Some LeOp) ^^ Bool.neg
| Some NeqOp -> get_x ^^ get_y ^^ compare env (Some EqOp) ^^ Bool.neg
| _ ->
begin
let set_x = G.setter_for get_x in
let set_y = G.setter_for get_y in
get_x ^^ Tagged.load_forwarding_pointer env ^^ set_x ^^
get_y ^^ Tagged.load_forwarding_pointer env ^^ set_y ^^
let (set_len1, get_len1) = new_local env "len1" in
let (set_len2, get_len2) = new_local env "len2" in
let (set_len, get_len) = new_local env "len" in
let (set_a, get_a) = new_local env "a" in
let (set_b, get_b) = new_local env "b" in
get_x ^^ len env ^^ set_len1 ^^
get_y ^^ len env ^^ set_len2 ^^
(* Find minimum length *)
begin if op = Some EqOp then
(* Early exit for equality *)
get_len1 ^^ get_len2 ^^ compile_comparison I64Op.Eq ^^
E.if0 G.nop (Bool.lit false ^^ G.i Return) ^^
get_len1 ^^ set_len
else
get_len1 ^^ get_len2 ^^ compile_comparison I64Op.LeU ^^
E.if0
(get_len1 ^^ set_len)
(get_len2 ^^ set_len)
end ^^
(* We could do word-wise comparisons if we know that the trailing bytes
are zeroed *)
get_len ^^
from_0_to_n env (fun get_i ->
get_x ^^
payload_ptr_unskewed env ^^
get_i ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Add)) ^^
G.i (Load {ty = I64Type; align = 0; offset = 0L; sz = Some Wasm_exts.Types.(Pack8, ZX)}) ^^
set_a ^^
get_y ^^
payload_ptr_unskewed env ^^
get_i ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Add)) ^^
G.i (Load {ty = I64Type; align = 0; offset = 0L; sz = Some Wasm_exts.Types.(Pack8, ZX)}) ^^
set_b ^^
get_a ^^ get_b ^^ compile_comparison I64Op.Eq ^^
E.if0 G.nop (
(* first non-equal elements *)
begin match op with
| Some LeOp -> get_a ^^ get_b ^^ compile_comparison I64Op.LeU
| Some GeOp -> get_a ^^ get_b ^^ compile_comparison I64Op.GeU
| Some EqOp -> Bool.lit false
| None -> get_a ^^ get_b ^^ compile_comparison I64Op.LtU ^^
E.if1 I64Type is_lt is_gt
| _ -> assert false
end ^^
G.i Return
)
) ^^
(* Common prefix is same *)
match op with
| Some LeOp -> get_len1 ^^ get_len2 ^^ compile_comparison I64Op.LeU
| Some GeOp -> get_len1 ^^ get_len2 ^^ compile_comparison I64Op.GeU
| Some EqOp -> Bool.lit true (* NB: Different length handled above *)
| None ->
get_len1 ^^ get_len2 ^^ compile_comparison I64Op.LtU ^^
E.if1 I64Type is_lt (
get_len1 ^^ get_len2 ^^ compile_comparison I64Op.GtU ^^
E.if1 I64Type is_gt is_eq
)
| _ -> assert false
end
)
let iter env =
E.call_import env "rts" "blob_iter"
let iter_done env =
E.call_import env "rts" "blob_iter_done"
let iter_next env =
E.call_import env "rts" "blob_iter_next" ^^
TaggedSmallWord.msb_adjust Type.Nat8
let dyn_alloc_scratch env =
let (set_len, get_len) = new_local env "len" in
set_len ^^
alloc env Tagged.B get_len ^^ payload_ptr_unskewed env
end (* Blob *)
module Object = struct
(* An object with a mutable field1 and immutable field 2 has the following
heap layout:
┌──────┬─────┬──────────┬─────────┬─────────────┬───┐
│ obj header │ hash_ptr │ ind_ptr │ field2_data │ … │
└──────┴─────┴┬─────────┴┬────────┴─────────────┴───┘
┌────────┘ │
│ ┌───────────────┘
│ ↓
│ ╶─┬────────┬─────────────┐
│ │ MutBox │ field1_data │
↓ └────────┴─────────────┘
┌─────────────┬─────────────┬─────────────┬───┐
│ blob header │ field1_hash │ field2_hash │ … │
└─────────────┴─────────────┴─────────────┴───┘
The object header includes the object tag (Object) and the forwarding pointer.
The size of the object (number of fields) can be derived from the hash blob via `hash_ptr`.
The field hashes reside in a blob inside the dynamic heap.
The hash blob needs to be tracked by the GC, but not the content of the hash blob.
This is because the hash values are plain numbers that would look like skewed pointers.ters.
The hash_ptr is skewed.
The field2_data for immutable fields is a vanilla word.
The field1_data for mutable fields are pointers to a MutBox. This indirection
is a consequence of how we compile object literals with `await` instructions,
as these mutable fields need to be able to alias local mutable variables, e.g.
`{ public let f = 1; await async (); public let var v = 2}`.
Other use cases are object constructors with public and private mutable fields,
where the physical record only wraps the public fields.
Moreover, closures can selectively capture the individual fields instead of
the containing object.
Finally, classical Candid stabilization/destabilization also relies on the
indirection of mutable fields, to reserve and store alias information in those
locations.
We could alternatively switch to an allocate-first approach in the
await-translation of objects, and get rid of this indirection -- if it were
not for the implementing of sharing of mutable stable values.
*)
let header_size = Int64.add Tagged.header_size 1L
let hash_ptr_field = Int64.add Tagged.header_size 0L
module FieldEnv = Env.Make(String)
(* This is for non-recursive objects. *)
(* The instructions in the field already create the indirection if needed *)
let object_builder env (fs : (string * (E.t -> G.t)) list ) =
let name_pos_map =
fs |>
(* We could store only public fields in the object, but
then we need to allocate separate boxes for the non-public ones:
List.filter (fun (_, vis, f) -> vis.it = Public) |>
*)
List.map (fun (n,_) -> (E.hash env n, n)) |>
List.sort compare |>
List.mapi (fun i (_h,n) -> (n,Int64.of_int i)) |>
List.fold_left (fun m (n,i) -> FieldEnv.add n i m) FieldEnv.empty in
let sz = Int64.of_int (FieldEnv.cardinal name_pos_map) in
(* Create hash blob *)
let hashes = fs |>
List.map (fun (n,_) -> E.hash env n) |>
List.sort compare in
let hash_blob =
let hash_payload = StaticBytes.[ i64s hashes ] in
Blob.constant env Tagged.B (StaticBytes.as_bytes hash_payload)
in
(fun env ->
(* Allocate memory *)
let (set_ri, get_ri, ri) = new_local_ env I64Type "obj" in
Tagged.alloc env (Int64.add header_size sz) Tagged.Object ^^
set_ri ^^
(* Set hash_ptr *)
get_ri ^^
Tagged.materialize_shared_value env hash_blob ^^
Tagged.store_field env hash_ptr_field ^^
(* Write all the fields *)
let init_field (name, generate_value) : G.t =
(* Write the pointer to the indirection *)
get_ri ^^
generate_value env ^^
let i = FieldEnv.find name name_pos_map in
let offset = Int64.add header_size i in
Tagged.store_field env offset
in
G.concat_map init_field fs ^^
(* Return the pointer to the object *)
get_ri ^^
Tagged.allocation_barrier env
)
let constant env (fs : (string * E.shared_value) list) =
let materialize_fields = List.map (fun (name, value) -> (name, fun env -> Tagged.materialize_shared_value env value)) fs in
let allocation = object_builder env materialize_fields in
Tagged.shared_object env allocation
(* This is for non-recursive objects, i.e. ObjNewE *)
(* The instructions in the field already create the indirection if needed *)
let lit_raw env (fs : (string * (unit -> G.t)) list ) =
let materialize_fields = List.map (fun (name, generate_value) -> (name, (fun env -> generate_value ()))) fs in
let allocation = object_builder env materialize_fields in
allocation env
(* Reflection used by orthogonal persistence:
Check whether an (actor) object contains a specific field *)
let contains_field env field =
compile_unboxed_const (E.hash env field) ^^
E.call_import env "rts" "contains_field" ^^
Bool.from_rts_int32
(* Returns a pointer to the object field (without following the field indirection) *)
let idx_hash_raw env low_bound =
let name = Printf.sprintf "obj_idx<%d>" low_bound in
Func.share_code2 Func.Always env name (("x", I64Type), ("hash", I64Type)) [I64Type] (fun env get_x get_hash ->
let set_x = G.setter_for get_x in
let set_h_ptr, get_h_ptr = new_local env "h_ptr" in
get_x ^^ Tagged.load_forwarding_pointer env ^^ set_x ^^
get_x ^^ Tagged.load_field env hash_ptr_field ^^
Blob.payload_ptr_unskewed env ^^
(* Linearly scan through the fields (binary search can come later) *)
(* unskew h_ptr and advance both to low bound *)
compile_add_const Int64.(mul Heap.word_size (of_int low_bound)) ^^
set_h_ptr ^^
get_x ^^
compile_add_const Int64.(mul Heap.word_size (add header_size (of_int low_bound))) ^^
set_x ^^
G.loop0 (
get_h_ptr ^^ load_unskewed_ptr ^^
get_hash ^^ compile_comparison I64Op.Eq ^^
E.if0
(get_x ^^ G.i Return)
(get_h_ptr ^^ compile_add_const Heap.word_size ^^ set_h_ptr ^^
get_x ^^ compile_add_const Heap.word_size ^^ set_x ^^
G.i (Br (nr 1l)))
) ^^
G.i Unreachable
)
(* Returns a pointer to the object field (possibly following the indirection) *)
let idx_hash env low_bound indirect =
if indirect
then
let name = Printf.sprintf "obj_idx_ind<%d>" low_bound in
Func.share_code2 Func.Never env name (("x", I64Type), ("hash", I64Type)) [I64Type] (fun env get_x get_hash ->
get_x ^^ get_hash ^^
idx_hash_raw env low_bound ^^
load_ptr ^^ Tagged.load_forwarding_pointer env ^^
compile_add_const (Int64.mul MutBox.field Heap.word_size)
)
else idx_hash_raw env low_bound
let field_type env obj_type s =
let _, fields = Type.as_obj_sub [s] obj_type in
Type.lookup_val_field s fields
(* Determines whether the field is mutable (and thus needs an indirection) *)
let is_mut_field env obj_type s =
let _, fields = Type.as_obj_sub [s] obj_type in
Type.is_mut (Type.lookup_val_field s fields)
(* Computes a lower bound for the positional index of a field in an object *)
let field_lower_bound env obj_type s =
let open Type in
let _, fields = as_obj_sub [s] obj_type in
List.iter (function {typ = Typ _; _} -> assert false | _ -> ()) fields;
let sorted_by_hash =
List.sort
(fun (h1, _) (h2, _) -> compare_uint64 h1 h2)
(List.map (fun f -> E.hash env f.lab, f) fields) in
match Lib.List.index_of s (List.map (fun (_, {lab; _}) -> lab) sorted_by_hash) with
| Some i -> i
| _ -> assert false
(* Returns a pointer to the object field (without following the indirection) *)
let idx_raw env f =
compile_unboxed_const (E.hash env f) ^^
idx_hash_raw env 0
(* Returns a pointer to the object field (possibly following the indirection) *)
let idx env obj_type f =
compile_unboxed_const (E.hash env f) ^^
idx_hash env (field_lower_bound env obj_type f) (is_mut_field env obj_type f)
(* load the value (or the mutbox) *)
let load_idx_raw env f =
idx_raw env f ^^
load_ptr
(* load the actual value (dereferencing the mutbox) *)
let load_idx env obj_type f =
idx env obj_type f ^^
load_ptr
end (* Object *)
module Region = struct
(*
See rts/motoko-rts/src/region.rs
*)
(* Object layout:
┌─────┬──────────┬──────────────────┬─────────────────┐
│ tag │ id_field │ page_count_field │ vec_pages_field │
└─────┴──────────┴──────────────────┴─────────────────┘
(unboxed, low 16 bits, rest 0-initialized padding)
unboxed u32
Blob
*)
let alloc_region env =
E.call_import env "rts" "alloc_region"
let init_region env =
E.call_import env "rts" "init_region"
(* field accessors *)
(* NB: all these opns must resolve forwarding pointers here or in RTS *)
let id env =
E.call_import env "rts" "region_id"
let page_count env =
E.call_import env "rts" "region_page_count"
let vec_pages env =
E.call_import env "rts" "region_vec_pages"
let new_ env =
E.require_stable_memory env;
E.call_import env "rts" "region_new"
let size env =
E.require_stable_memory env;
E.call_import env "rts" "region_size"
let grow env =
E.require_stable_memory env;
E.call_import env "rts" "region_grow"
let load_blob env =
E.require_stable_memory env;
E.call_import env "rts" "region_load_blob"
let store_blob env =
E.require_stable_memory env;
E.call_import env "rts" "region_store_blob"
let load_word8 env =
E.require_stable_memory env;
E.call_import env "rts" "region_load_word8"
let store_word8 env =
E.require_stable_memory env;
E.call_import env "rts" "region_store_word8"
let load_word16 env =
E.require_stable_memory env;
E.call_import env "rts" "region_load_word16"
let store_word16 env =
E.require_stable_memory env;
E.call_import env "rts" "region_store_word16"
let load_word32 env =
E.require_stable_memory env;
E.call_import env "rts" "region_load_word32"
let store_word32 env =
E.require_stable_memory env;
E.call_import env "rts" "region_store_word32"
let load_word64 env =
E.require_stable_memory env;
E.call_import env "rts" "region_load_word64"
let store_word64 env =
E.require_stable_memory env;
E.call_import env "rts" "region_store_word64"
let load_float64 env =
E.require_stable_memory env;
E.call_import env "rts" "region_load_float64"
let store_float64 env =
E.require_stable_memory env;
E.call_import env "rts" "region_store_float64"
end
module Text = struct
(*
Most of the heavy lifting around text values is in rts/motoko-rts/src/text.rs
*)
(* The layout of a concatenation node is
┌──────┬─────┬─────────┬───────┬───────┐
│ obj header │ n_bytes │ text1 │ text2 │
└──────┴─────┴─────────┴───────┴───────┘
The object header includes the object tag (TAG_CONCAT defined in rts/types.rs) and the forwarding pointer
This is internal to rts/text.c, with the exception of GC-related code.
*)
let of_ptr_size env =
E.call_import env "rts" "text_of_ptr_size"
let concat env =
E.call_import env "rts" "text_concat"
let size env =
E.call_import env "rts" "text_size"
let to_buf env =
E.call_import env "rts" "text_to_buf"
let len_nat env =
Func.share_code1 Func.Never env "text_len" ("text", I64Type) [I64Type] (fun env get ->
get ^^
E.call_import env "rts" "text_len" ^^
BigNum.from_word64 env
)
let prim_showChar env =
TaggedSmallWord.lsb_adjust_codepoint env ^^
G.i (Convert (Wasm_exts.Values.I32 I32Op.WrapI64)) ^^
E.call_import env "rts" "text_singleton"
let to_blob env = E.call_import env "rts" "blob_of_text"
let lowercase env = E.call_import env "rts" "text_lowercase"
let uppercase env = E.call_import env "rts" "text_uppercase"
let of_blob env =
let (set_blob, get_blob) = new_local env "blob" in
set_blob ^^
get_blob ^^ Blob.as_ptr_len env ^^
E.call_import env "rts" "utf8_valid" ^^
Bool.from_rts_int32 ^^
E.if1 I64Type
(get_blob ^^ Blob.copy env Tagged.B Tagged.T ^^
set_blob ^^
Opt.inject_simple env get_blob)
(Opt.null_lit env)
let iter env =
E.call_import env "rts" "text_iter"
let iter_done env =
E.call_import env "rts" "text_iter_done"
let iter_next env =
E.call_import env "rts" "text_iter_next" ^^ Bool.from_rts_int32 ^^
TaggedSmallWord.msb_adjust_codepoint
let compare env op =
let open Operator in
let name = match op with
| LtOp -> "Text.compare_lt"
| LeOp -> "Text.compare_le"
| GeOp -> "Text.compare_ge"
| GtOp -> "Text.compare_gt"
| EqOp -> "Text.compare_eq"
| NeqOp -> assert false in
Func.share_code2 Func.Never env name (("x", I64Type), ("y", I64Type)) [I64Type] (fun env get_x get_y ->
get_x ^^ Tagged.load_forwarding_pointer env ^^
get_y ^^ Tagged.load_forwarding_pointer env ^^
E.call_import env "rts" "text_compare" ^^
compile_unboxed_const 0L ^^
match op with
| LtOp -> compile_comparison I64Op.LtS
| LeOp -> compile_comparison I64Op.LeS
| GtOp -> compile_comparison I64Op.GtS
| GeOp -> compile_comparison I64Op.GeS
| EqOp -> compile_comparison I64Op.Eq
| NeqOp -> assert false
)
end (* Text *)
module Arr = struct
(* Object layout:
┌──────┬─────┬──────────┬────────┬───┐
│ obj header │ n_fields │ field1 │ … │
└──────┴─────┴──────────┴────────┴───┘
The object header includes the object tag (Array) and the forwarding pointer.
No difference between mutable and immutable arrays.
*)
(* NB max_array_size must agree with limit 2^61 imposed by RTS alloc_array() *)
let max_array_size = Int64.shift_left 1L 61 (* inclusive *)
let header_size = Int64.add Tagged.header_size 1L
let element_size = 8L
let len_field = Int64.add Tagged.header_size 0L
let len env =
Tagged.load_forwarding_pointer env ^^
Tagged.load_field env len_field
(* Static array access. No checking *)
let load_field env n =
Tagged.load_forwarding_pointer env ^^
Tagged.load_field env Int64.(add n header_size)
(* Dynamic array access. Returns the address (not the value) of the field.
Does no bounds checking *)
let unsafe_idx env =
Func.share_code2 Func.Never env "Array.unsafe_idx" (("array", I64Type), ("idx", I64Type)) [I64Type] (fun env get_array get_idx ->
get_idx ^^
compile_add_const header_size ^^
compile_mul_const element_size ^^
get_array ^^
Tagged.load_forwarding_pointer env ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Add))
)
(* Dynamic array access. Returns the address (not the value) of the field.
Does bounds checking *)
let idx env =
Func.share_code2 Func.Never env "Array.idx" (("array", I64Type), ("idx", I64Type)) [I64Type] (fun env get_array get_idx ->
(* No need to check the lower bound, we interpret idx as unsigned *)
(* Check the upper bound *)
get_idx ^^
get_array ^^ len env ^^
compile_comparison I64Op.LtU ^^
E.else_trap_with env "Array index out of bounds" ^^
get_idx ^^
compile_add_const header_size ^^
compile_mul_const element_size ^^
get_array ^^
Tagged.load_forwarding_pointer env ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Add))
)
(* As above, but taking a bigint (Nat), and reporting overflow as out of bounds *)
let idx_bigint env =
Func.share_code2 Func.Never env "Array.idx_bigint" (("array", I64Type), ("idx", I64Type)) [I64Type] (fun env get_array get_idx ->
get_array ^^
get_idx ^^
BigNum.to_word64_with env (Blob.lit env Tagged.T "Array index out of bounds") ^^
idx env
)
let element_type env typ = match Type.promote typ with
| Type.Array element_type -> element_type
| _ -> assert false
(* Compile an array literal. *)
let lit env sort element_instructions =
Tagged.obj env Tagged.(Array sort)
([ compile_unboxed_const (Wasm.I64.of_int_u (List.length element_instructions))
] @ element_instructions)
let constant env sort elements =
Tagged.shared_object env (fun env ->
let materialized_elements = List.map (fun element -> Tagged.materialize_shared_value env element) elements in
lit env sort materialized_elements
)
(* Does not initialize the fields! *)
(* Note: Post allocation barrier must be applied after initialization *)
let alloc env array_sort len =
compile_unboxed_const Tagged.(int_of_tag (Array array_sort)) ^^
len ^^
E.call_import env "rts" "alloc_array"
let iterate env get_array body =
let (set_boundary, get_boundary) = new_local env "boundary" in
let (set_pointer, get_pointer) = new_local env "pointer" in
let set_array = G.setter_for get_array in
get_array ^^ Tagged.load_forwarding_pointer env ^^ set_array ^^
(* Initial element pointer, skewed *)
compile_unboxed_const header_size ^^
compile_mul_const element_size ^^
get_array ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Add)) ^^
set_pointer ^^
(* Upper pointer boundary, skewed *)
get_array ^^
Tagged.load_field env len_field ^^
compile_mul_const element_size ^^
get_pointer ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Add)) ^^
set_boundary ^^
(* Loop through all elements *)
compile_while env
( get_pointer ^^
get_boundary ^^
compile_comparison I64Op.LtU
) (
body get_pointer ^^
(* Next element pointer, skewed *)
get_pointer ^^
compile_add_const element_size ^^
set_pointer
)
(* The primitive operations *)
(* No need to wrap them in RTS functions: They occur only once, in the prelude. *)
let init env =
let (set_x, get_x) = new_local env "x" in
let (set_r, get_r) = new_local env "r" in
set_x ^^
(* Allocate *)
BigNum.to_word64 env ^^
set_r ^^
alloc env Tagged.M get_r ^^
set_r ^^
(* Write elements *)
iterate env get_r (fun get_pointer ->
get_pointer ^^
get_x ^^
store_ptr
) ^^
get_r ^^
Tagged.allocation_barrier env
let tabulate env =
let (set_f, get_f) = new_local env "f" in
let (set_r, get_r) = new_local env "r" in
let (set_i, get_i) = new_local env "i" in
set_f ^^
(* Allocate *)
BigNum.to_word64 env ^^
set_r ^^
alloc env Tagged.I get_r ^^
set_r ^^
(* Initial index *)
compile_unboxed_const 0L ^^
set_i ^^
(* Write elements *)
iterate env get_r (fun get_pointer ->
get_pointer ^^
(* The closure *)
get_f ^^
Closure.prepare_closure_call env ^^
(* The arg *)
get_i ^^
BigNum.from_word64 env ^^
(* The closure again *)
get_f ^^
(* Call *)
Closure.call_closure env 1 1 ^^
store_ptr ^^
(* Increment index *)
get_i ^^
compile_add_const 1L ^^
set_i
) ^^
get_r ^^
Tagged.allocation_barrier env
let ofBlob env sort =
let name = Tagged.(match sort with I -> "Arr.ofBlob" | M -> "Arr.ofBlobMut" | _ -> assert false) in
Func.share_code1 Func.Always env name ("blob", I64Type) [I64Type] (fun env get_blob ->
let (set_len, get_len) = new_local env "len" in
let (set_r, get_r) = new_local env "r" in
get_blob ^^ Blob.len env ^^ set_len ^^
alloc env sort get_len ^^ set_r ^^
get_len ^^ from_0_to_n env (fun get_i ->
get_r ^^ get_i ^^ unsafe_idx env ^^
get_blob ^^ Blob.payload_ptr_unskewed env ^^
get_i ^^ G.i (Binary (Wasm_exts.Values.I64 I64Op.Add)) ^^
G.i (Load {ty = I64Type; align = 0; offset = 0L; sz = Some Wasm_exts.Types.(Pack8, ZX)}) ^^
TaggedSmallWord.msb_adjust Type.Nat8 ^^
TaggedSmallWord.tag env Type.Nat8 ^^
store_ptr
) ^^
get_r ^^
Tagged.allocation_barrier env
)
let toBlob env =
Func.share_code1 Func.Always env "Arr.toBlob" ("array", I64Type) [I64Type] (fun env get_a ->
let (set_len, get_len) = new_local env "len" in
let (set_r, get_r) = new_local env "r" in
get_a ^^ len env ^^ set_len ^^
Blob.alloc env Tagged.B get_len ^^ set_r ^^
get_len ^^ from_0_to_n env (fun get_i ->
get_r ^^ Blob.payload_ptr_unskewed env ^^
get_i ^^ G.i (Binary (Wasm_exts.Values.I64 I64Op.Add)) ^^
get_a ^^ get_i ^^ unsafe_idx env ^^
load_ptr ^^
TaggedSmallWord.lsb_adjust Type.Nat8 ^^
G.i (Store {ty = I64Type; align = 0; offset = 0L; sz = Some Wasm_exts.Types.Pack8})
) ^^
get_r
)
end (* Array *)
module Tuple = struct
(* Tuples use the same object representation (and same tag) as arrays.
Even though we know the size statically, we still need the size
information for the GC.
One could introduce tags for small tuples, to save one word.
*)
(* We represent the boxed empty tuple as the unboxed scalar 0, i.e. simply as
number (but really anything is fine, we never look at this) *)
let unit_vanilla_lit env = TaggingScheme.unit_tag (* all tag, trivial payload *)
let compile_unit env = compile_unboxed_const (unit_vanilla_lit ())
(* Expects on the stack the pointer to the array. *)
let load_n env n =
Tagged.load_forwarding_pointer env ^^
Tagged.(sanity_check_tag __LINE__ env (Array T)) ^^
Tagged.load_field env (Int64.add Arr.header_size n)
(* Takes n elements of the stack and produces an argument tuple *)
let from_stack env n =
if n = 0 then compile_unit env
else
let name = Printf.sprintf "to_%i_tuple" n in
let args = Lib.List.table n (fun i -> Printf.sprintf "arg%i" i, I64Type) in
Func.share_code Func.Never env name args [I64Type] (fun env getters ->
Arr.lit env Tagged.T (Lib.List.table n (fun i -> List.nth getters i))
)
(* Takes an argument tuple and puts the elements on the stack: *)
let to_stack env n =
if n = 0 then G.i Drop else
begin
let name = Printf.sprintf "from_%i_tuple" n in
let retty = Lib.List.make n I64Type in
Func.share_code1 Func.Never env name ("tup", I64Type) retty (fun env get_tup ->
G.table n (fun i -> get_tup ^^ load_n env (Int64.of_int i))
)
end
end (* Tuple *)
module Lifecycle = struct
(*
This module models the life cycle of a canister as a very simple state machine,
keeps track of the current state of the canister, and traps noisily if an
unexpected transition happens. Such a transition would either be a bug in the
underlying system, or in our RTS.
*)
type state =
| PreInit
(* We do not use the (start) function when compiling canisters, so skip
these two:
| InStart
| Started (* (start) has run *)
*)
| InInit (* canister_init *)
| Idle (* basic steady state *)
| InUpdate
| InQuery
| PostQuery (* an invalid state *)
| InPreUpgrade
| PostPreUpgrade (* an invalid state *)
| InPostUpgrade
| InComposite
| InStabilization (* stabilization before upgrade *)
| InDestabilization (* destabilization after upgrade *)
let string_of_state state = match state with
| PreInit -> "PreInit"
| InInit -> "InInit"
| Idle -> "Idle"
| InUpdate -> "InUpdate"
| InQuery -> "InQuery"
| PostQuery -> "PostQuery"
| InPreUpgrade -> "InPreUpgrade"
| PostPreUpgrade -> "PostPreUpgrade"
| InPostUpgrade -> "InPostUpgrade"
| InComposite -> "InComposite"
| InStabilization -> "InStabilization"
| InDestabilization -> "InDestabilization"
let int_of_state = function
| PreInit -> 0L (* Automatically null *)
(*
| InStart -> 1L
| Started -> 2L
*)
| InInit -> 3L
| Idle -> 4L
| InUpdate -> 5L
| InQuery -> 6L
| PostQuery -> 7L
| InPreUpgrade -> 8L
| PostPreUpgrade -> 9L
| InPostUpgrade -> 10L
| InComposite -> 11L
| InStabilization -> 12L
| InDestabilization -> 13L
let ptr () = Stack.end_ ()
let end_ () = Int64.add (Stack.end_ ()) Heap.word_size
(* Which states may come before this *)
let pre_states = function
| PreInit -> []
(*
| InStart -> [PreInit]
| Started -> [InStart]
*)
| InInit -> [PreInit]
| Idle -> [InInit; InUpdate; InPostUpgrade; InComposite; InDestabilization]
| InUpdate -> [Idle]
| InQuery -> [Idle]
| PostQuery -> [InQuery]
| InPreUpgrade -> [Idle; InStabilization]
| PostPreUpgrade -> [InPreUpgrade]
| InPostUpgrade -> [InInit; InDestabilization]
| InComposite -> [Idle; InComposite]
| InStabilization -> [Idle; InStabilization]
| InDestabilization -> [InInit]
let get env =
compile_unboxed_const (ptr ()) ^^
load_unskewed_ptr
let set env new_state =
compile_unboxed_const (ptr ()) ^^
compile_unboxed_const (int_of_state new_state) ^^
store_unskewed_ptr
let during_explicit_upgrade env =
get env ^^
compile_eq_const (int_of_state InStabilization) ^^
get env ^^
compile_eq_const (int_of_state InDestabilization) ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Or))
let trans env new_state =
let name = "trans_state" ^ Int64.to_string (int_of_state new_state) in
Func.share_code0 Func.Always env name [] (fun env ->
G.block0 (
let rec go = function
| [] ->
during_explicit_upgrade env ^^
E.if0
(E.trap_with env "Messages are blocked during stabilization")
(E.trap_with env
("internal error: unexpected state entering " ^ string_of_state new_state))
| (s::ss) ->
get env ^^ compile_eq_const (int_of_state s) ^^
E.if0 (G.i (Br (nr 1l))) G.nop ^^
go ss
in go (pre_states new_state)
) ^^
set env new_state
)
let is_in env state =
get env ^^
compile_eq_const (int_of_state state)
end (* Lifecycle *)
module IC = struct
(* IC-specific stuff: System imports, databufs etc. *)
let register_globals env =
(* result of last ic0.call_perform *)
E.add_global64 env "__call_perform_status" Mutable 0L;
E.add_global64 env "__call_perform_message" Mutable 0L;
E.add_global64 env "__run_post_upgrade" Mutable 0L
(* NB: __call_perform_message is not a root so text contents *must* be static *)
let get_call_perform_status env =
G.i (GlobalGet (nr (E.get_global env "__call_perform_status")))
let set_call_perform_status env =
G.i (GlobalSet (nr (E.get_global env "__call_perform_status")))
let get_call_perform_message env =
G.i (GlobalGet (nr (E.get_global env "__call_perform_message")))
let set_call_perform_message env =
G.i (GlobalSet (nr (E.get_global env "__call_perform_message")))
let get_run_post_upgrade env =
G.i (GlobalGet (nr (E.get_global env "__run_post_upgrade")))
let set_run_post_upgrade env =
G.i (GlobalSet (nr (E.get_global env "__run_post_upgrade")))
let init_globals env =
Blob.lit env Tagged.T "" ^^
set_call_perform_message env
let i64s n = Lib.List.make n I64Type
let import_ic0 env =
E.add_func_import env "ic0" "accept_message" [] [];
E.add_func_import env "ic0" "call_data_append" (i64s 2) [];
E.add_func_import env "ic0" "call_cycles_add128" (i64s 2) [];
E.add_func_import env "ic0" "call_new" (i64s 8) [];
E.add_func_import env "ic0" "call_perform" [] [I32Type];
E.add_func_import env "ic0" "call_on_cleanup" (i64s 2) [];
E.add_func_import env "ic0" "canister_cycle_balance128" [I64Type] [];
E.add_func_import env "ic0" "canister_self_copy" (i64s 3) [];
E.add_func_import env "ic0" "canister_self_size" [] [I64Type];
E.add_func_import env "ic0" "canister_status" [] [I32Type];
E.add_func_import env "ic0" "canister_version" [] [I64Type];
E.add_func_import env "ic0" "is_controller" (i64s 2) [I32Type];
E.add_func_import env "ic0" "debug_print" (i64s 2) [];
E.add_func_import env "ic0" "msg_arg_data_copy" (i64s 3) [];
E.add_func_import env "ic0" "msg_arg_data_size" [] [I64Type];
E.add_func_import env "ic0" "msg_caller_copy" (i64s 3) [];
E.add_func_import env "ic0" "msg_caller_size" [] [I64Type];
E.add_func_import env "ic0" "msg_cycles_available128" [I64Type] [];
E.add_func_import env "ic0" "msg_cycles_refunded128" [I64Type] [];
E.add_func_import env "ic0" "msg_cycles_accept128" (i64s 3) [];
E.add_func_import env "ic0" "cycles_burn128" (i64s 3) [];
E.add_func_import env "ic0" "certified_data_set" (i64s 2) [];
E.add_func_import env "ic0" "data_certificate_present" [] [I32Type];
E.add_func_import env "ic0" "data_certificate_size" [] [I64Type];
E.add_func_import env "ic0" "data_certificate_copy" (i64s 3) [];
E.add_func_import env "ic0" "msg_method_name_size" [] [I64Type];
E.add_func_import env "ic0" "msg_method_name_copy" (i64s 3) [];
E.add_func_import env "ic0" "msg_reject_code" [] [I32Type];
E.add_func_import env "ic0" "msg_reject_msg_size" [] [I64Type];
E.add_func_import env "ic0" "msg_reject_msg_copy" (i64s 3) [];
E.add_func_import env "ic0" "msg_reject" (i64s 2) [];
E.add_func_import env "ic0" "msg_reply_data_append" (i64s 2) [];
E.add_func_import env "ic0" "msg_reply" [] [];
E.add_func_import env "ic0" "msg_deadline" [] [I64Type];
E.add_func_import env "ic0" "performance_counter" [I32Type] [I64Type];
E.add_func_import env "ic0" "trap" (i64s 2) [];
E.add_func_import env "ic0" "stable64_write" (i64s 3) [];
E.add_func_import env "ic0" "stable64_read" (i64s 3) [];
E.add_func_import env "ic0" "stable64_size" [] [I64Type];
E.add_func_import env "ic0" "stable64_grow" [I64Type] [I64Type];
E.add_func_import env "ic0" "time" [] [I64Type];
if !Flags.global_timer then
E.add_func_import env "ic0" "global_timer_set" [I64Type] [I64Type]
let system_imports env =
match E.mode env with
| Flags.ICMode ->
import_ic0 env
| Flags.RefMode ->
import_ic0 env
| Flags.WASIMode ->
(* Wasi function is still 32-bit based *)
E.add_func_import env "wasi_snapshot_preview1" "fd_write" [I32Type; I32Type; I32Type; I32Type] [I32Type];
| Flags.WasmMode -> ()
let system_call env funcname = E.call_import env "ic0" funcname
let register env =
let min env first second =
first ^^
second ^^
compile_comparison I64Op.LtU ^^
E.if1 I64Type (first) (second) in
Func.define_built_in env "print_ptr" [("ptr", I64Type); ("len", I64Type)] [] (fun env ->
match E.mode env with
| Flags.WasmMode -> G.i Nop
| Flags.ICMode | Flags.RefMode ->
G.i (LocalGet (nr 0l)) ^^
G.i (LocalGet (nr 1l)) ^^
system_call env "debug_print"
| Flags.WASIMode -> begin
(* Since the wasmtime `fd_write` function still only supports 32-bit pointers in 64-bit mode,
we use a static buffer for the text output that resides in the 32-bit space.
This buffer is reserved is limited to 512 bytes and is managed in the RTS, see `buffer_in_32_bit_range()`. *)
let get_ptr = G.i (LocalGet (nr 0l)) in
let get_len = G.i (LocalGet (nr 1l)) in
Stack.with_words env "io_vec" 6L (fun get_iovec_ptr ->
let buffer_length = 512 in
let buffer_ptr = E.call_import env "rts" "buffer_in_32_bit_range" in
(* Truncate the text if it does not fit into the buffer **)
min env (compile_unboxed_const (Int64.of_int buffer_length)) get_len ^^
G.setter_for get_len ^^
(* Copy the text to the static buffer in 32-bit space *)
buffer_ptr ^^
get_ptr ^^
get_len ^^
Heap.memcpy env ^^
(* We use the iovec functionality to append a newline *)
get_iovec_ptr ^^
narrow_to_32 env buffer_ptr ^^ (* This is safe because the buffer resides in 32-bit space *)
G.i (Store {ty = I32Type; align = 2; offset = 0L; sz = None}) ^^
get_iovec_ptr ^^
narrow_to_32 env get_len ^^
G.i (Store {ty = I32Type; align = 2; offset = 4L; sz = None}) ^^
get_iovec_ptr ^^
narrow_to_32 env get_iovec_ptr ^^ (* The stack pointer should always be in the 32-bit space *)
compile_add32_const 16l ^^
G.i (Store {ty = I32Type; align = 2; offset = 8L; sz = None}) ^^
get_iovec_ptr ^^
compile_const_32 1l ^^
G.i (Store {ty = I32Type; align = 2; offset = 12L; sz = None}) ^^
get_iovec_ptr ^^
compile_const_32 (Int32.of_int (Char.code '\n')) ^^
G.i (Store {ty = I32Type; align = 0; offset = 16L; sz = Some Wasm_exts.Types.Pack8}) ^^
(* Call fd_write twice to work around
https://github.com/bytecodealliance/wasmtime/issues/629
*)
compile_const_32 1l (* stdout *) ^^
narrow_to_32 env get_iovec_ptr ^^
compile_const_32 1l (* one string segment (2 doesn't work) *) ^^
narrow_to_32 env get_iovec_ptr ^^
compile_add32_const 20l ^^ (* out for bytes written, we ignore that *)
E.call_import env "wasi_snapshot_preview1" "fd_write" ^^
G.i Drop ^^
compile_const_32 1l (* stdout *) ^^
narrow_to_32 env get_iovec_ptr ^^
compile_add32_const 8l ^^
compile_const_32 1l (* one string segment *) ^^
narrow_to_32 env get_iovec_ptr ^^
compile_add32_const 20l ^^ (* out for bytes written, we ignore that *)
E.call_import env "wasi_snapshot_preview1" "fd_write" ^^
G.i Drop)
end);
E.add_export env (nr {
name = Lib.Utf8.decode "print_ptr";
edesc = nr (FuncExport (nr (E.built_in env "print_ptr")))
})
let ic_system_call call env =
match E.mode env with
| Flags.(ICMode | RefMode) ->
system_call env call
| _ ->
E.trap_with env Printf.(sprintf "cannot get %s when running locally" call)
let performance_counter env =
G.i (Convert (Wasm_exts.Values.I32 I32Op.WrapI64)) ^^
ic_system_call "performance_counter" env
let is_controller env =
ic_system_call "is_controller" env ^^
G.i (Convert (Wasm_exts.Values.I64 I64Op.ExtendUI32))
let canister_version env = ic_system_call "canister_version" env
let print_ptr_len env = G.i (Call (nr (E.built_in env "print_ptr")))
let print_text env =
Func.share_code1 Func.Never env "print_text" ("str", I64Type) [] (fun env get_str ->
let (set_blob, get_blob) = new_local env "blob" in
get_str ^^ Text.to_blob env ^^ set_blob ^^
get_blob ^^ Blob.payload_ptr_unskewed env ^^
get_blob ^^ Blob.len env ^^
print_ptr_len env
)
(* For debugging *)
let _compile_static_print env s =
Blob.lit_ptr_len env Tagged.T s ^^ print_ptr_len env
let ic_trap env =
Func.share_code2 Func.Always env "ic_trap" (("ptr", I64Type), ("len", I64Type)) [] (fun env get_ptr get_length ->
get_ptr ^^
get_length ^^
system_call env "trap"
)
let trap_ptr_len env =
match E.mode env with
| Flags.WasmMode -> G.i Unreachable
| Flags.WASIMode -> print_ptr_len env ^^ G.i Unreachable
| Flags.ICMode | Flags.RefMode -> ic_trap env ^^ G.i Unreachable
let trap_with env s =
Blob.lit_ptr_len env Tagged.T s ^^ trap_ptr_len env
let trap_text env =
Text.to_blob env ^^ Blob.as_ptr_len env ^^ trap_ptr_len env
let default_exports env =
(* these exports seem to be wanted by the hypervisor/v8 *)
E.add_export env (nr {
name = Lib.Utf8.decode (
match E.mode env with
| Flags.WASIMode -> "memory"
| _ -> "mem"
);
edesc = nr (MemoryExport (nr 0l))
});
E.add_export env (nr {
name = Lib.Utf8.decode "table";
edesc = nr (TableExport (nr 0l))
})
let export_init env =
assert (E.mode env = Flags.ICMode || E.mode env = Flags.RefMode);
let empty_f = Func.of_body env [] [] (fun env ->
Lifecycle.trans env Lifecycle.InInit ^^
G.i (Call (nr (E.built_in env "init")))
(* Stay in `InInit` state for asynchronous destabilization after upgrade. *)
(* Garbage collection is not yet activated. *)
) in
let fi = E.add_fun env "canister_init" empty_f in
E.add_export env (nr {
name = Lib.Utf8.decode "canister_init";
edesc = nr (FuncExport (nr fi))
})
let export_heartbeat env =
assert (E.mode env = Flags.ICMode || E.mode env = Flags.RefMode);
let fi = E.add_fun env "canister_heartbeat"
(Func.of_body env [] [] (fun env ->
G.i (Call (nr (E.built_in env "heartbeat_exp"))) ^^
GC.collect_garbage env))
in
E.add_export env (nr {
name = Lib.Utf8.decode "canister_heartbeat";
edesc = nr (FuncExport (nr fi))
})
let export_timer env =
assert !Flags.global_timer;
assert (E.mode env = Flags.ICMode || E.mode env = Flags.RefMode);
let fi = E.add_fun env "canister_global_timer"
(Func.of_body env [] [] (fun env ->
G.i (Call (nr (E.built_in env "timer_exp"))) ^^
GC.collect_garbage env))
in
E.add_export env (nr {
name = Lib.Utf8.decode "canister_global_timer";
edesc = nr (FuncExport (nr fi))
})
let export_inspect env =
assert (E.mode env = Flags.ICMode || E.mode env = Flags.RefMode);
let fi = E.add_fun env "canister_inspect_message"
(Func.of_body env [] [] (fun env ->
G.i (Call (nr (E.built_in env "inspect_exp"))) ^^
system_call env "accept_message" (* assumes inspect_exp traps to reject *)
(* no need to GC !*)))
in
E.add_export env (nr {
name = Lib.Utf8.decode "canister_inspect_message";
edesc = nr (FuncExport (nr fi))
})
let initialize_main_actor_function_name = "@initialize_main_actor"
let initialize_main_actor env =
G.i (Call (nr (E.built_in env initialize_main_actor_function_name))) ^^
get_run_post_upgrade env ^^
(E.if0
begin
Lifecycle.trans env Lifecycle.InPostUpgrade ^^
G.i (Call (nr (E.built_in env "post_exp")))
end
G.nop)
let get_actor_to_persist_function_name = "@get_actor_to_persist"
let get_actor_to_persist env =
G.i (Call (nr (E.built_in env get_actor_to_persist_function_name)))
let export_wasi_start env =
assert (E.mode env = Flags.WASIMode);
let fi = E.add_fun env "_start" (Func.of_body env [] [] (fun env1 ->
Lifecycle.trans env Lifecycle.InInit ^^
G.i (Call (nr (E.built_in env "init"))) ^^
(if !Flags.sanity then
(* also test the GC in WASI mode if sanity checks are enabled *)
GC.collect_garbage env
else
G.nop) ^^
Lifecycle.trans env Lifecycle.Idle
)) in
E.add_export env (nr {
name = Lib.Utf8.decode "_start";
edesc = nr (FuncExport (nr fi))
})
let export_upgrade_methods env =
if E.mode env = Flags.ICMode || E.mode env = Flags.RefMode then
let status_stopped = 3l in
let pre_upgrade_fi = E.add_fun env "pre_upgrade" (Func.of_body env [] [] (fun env ->
Lifecycle.trans env Lifecycle.InPreUpgrade ^^
(* check status is stopped or trap on outstanding callbacks *)
system_call env "canister_status" ^^ compile_eq32_const status_stopped ^^
E.if0
(G.nop)
(ContinuationTable.count env ^^
E.then_trap_with env "canister_pre_upgrade attempted with outstanding message callbacks (try stopping the canister before upgrade)") ^^
(* call pre_upgrade expression & any system method *)
(G.i (Call (nr (E.built_in env "pre_exp")))) ^^
Lifecycle.trans env Lifecycle.PostPreUpgrade
)) in
let post_upgrade_fi = E.add_fun env "post_upgrade" (Func.of_body env [] [] (fun env ->
compile_unboxed_one ^^ set_run_post_upgrade env ^^
Lifecycle.trans env Lifecycle.InInit ^^
G.i (Call (nr (E.built_in env "init")))
(* The post upgrade hook is called later after the completed destabilization,
that may require additional explicit destabilization messages after upgrade. *)
)) in
E.add_export env (nr {
name = Lib.Utf8.decode "canister_pre_upgrade";
edesc = nr (FuncExport (nr pre_upgrade_fi))
});
E.add_export env (nr {
name = Lib.Utf8.decode "canister_post_upgrade";
edesc = nr (FuncExport (nr post_upgrade_fi))
})
let get_self_reference env =
match E.mode env with
| Flags.ICMode | Flags.RefMode ->
Func.share_code0 Func.Never env "canister_self" [I64Type] (fun env ->
Blob.of_size_copy env Tagged.A
(fun env ->
system_call env "canister_self_size")
(fun env ->
system_call env "canister_self_copy")
(fun env -> compile_unboxed_const 0L)
)
| _ ->
E.trap_with env "cannot get self-actor-reference when running locally"
let get_system_time env =
match E.mode env with
| Flags.ICMode | Flags.RefMode ->
system_call env "time"
| _ ->
E.trap_with env "cannot get system time when running locally"
let caller env =
match E.mode env with
| Flags.ICMode | Flags.RefMode ->
Blob.of_size_copy env Tagged.P
(fun env ->
system_call env "msg_caller_size")
(fun env ->
system_call env "msg_caller_copy")
(fun env -> compile_unboxed_const 0L)
| _ ->
E.trap_with env "cannot get caller when running locally"
let method_name env =
match E.mode env with
| Flags.ICMode | Flags.RefMode ->
Blob.of_size_copy env Tagged.T
(fun env ->
system_call env "msg_method_name_size")
(fun env ->
system_call env "msg_method_name_copy")
(fun env -> compile_unboxed_const 0L)
| _ ->
E.trap_with env "cannot get method_name when running locally"
let arg_data env =
match E.mode env with
| Flags.ICMode | Flags.RefMode ->
Blob.of_size_copy env Tagged.B
(fun env ->
system_call env "msg_arg_data_size")
(fun env ->
system_call env "msg_arg_data_copy")
(fun env -> compile_unboxed_const 0L)
| _ ->
E.trap_with env "cannot get arg_data when running locally"
let deadline env =
match E.mode env with
| Flags.(ICMode | RefMode) ->
system_call env "msg_deadline"
| _ ->
E.trap_with env "cannot get deadline when running locally"
let reject env arg_instrs =
match E.mode env with
| Flags.ICMode | Flags.RefMode ->
arg_instrs ^^
Text.to_blob env ^^
Blob.as_ptr_len env ^^
system_call env "msg_reject"
| _ ->
E.trap_with env "cannot reject when running locally"
let error_code env =
Func.share_code0 Func.Always env "error_code" [I64Type] (fun env ->
let (set_code, get_code) = new_local env "code" in
system_call env "msg_reject_code" ^^
G.i (Convert (Wasm_exts.Values.I64 I64Op.ExtendUI32)) ^^
set_code ^^
List.fold_right (fun (tag, const) code ->
get_code ^^ compile_unboxed_const const ^^
compile_comparison I64Op.Eq ^^
E.if1 I64Type
(Variant.inject env tag (Tuple.compile_unit env))
code)
["system_fatal", 1L;
"system_transient", 2L;
"destination_invalid", 3L;
"canister_reject", 4L;
"canister_error", 5L]
(Variant.inject env "future" (get_code ^^ BitTagged.tag env Type.Nat32)))
let error_message env =
Func.share_code0 Func.Never env "error_message" [I64Type] (fun env ->
Blob.of_size_copy env Tagged.T
(fun env -> system_call env "msg_reject_msg_size")
(fun env ->
system_call env "msg_reject_msg_copy")
(fun env -> compile_unboxed_const 0L)
)
let error_value env =
Func.share_code0 Func.Never env "error_value" [I64Type] (fun env ->
error_code env ^^
error_message env ^^
Tuple.from_stack env 2
)
let reply_with_data env =
Func.share_code2 Func.Never env "reply_with_data" (("start", I64Type), ("size", I64Type)) [] (
fun env get_data_start get_data_size ->
get_data_start ^^
get_data_size ^^
system_call env "msg_reply_data_append" ^^
system_call env "msg_reply"
)
let static_nullary_reply env =
Blob.lit_ptr_len env Tagged.B "DIDL\x00\x00" ^^
reply_with_data env
(* Actor reference on the stack *)
let actor_public_field env name =
(* simply tuple canister name and function name *)
Tagged.(sanity_check_tag __LINE__ env (Blob A)) ^^
Blob.lit env Tagged.T name ^^
Func.share_code2 Func.Never env "actor_public_field" (("actor", I64Type), ("func", I64Type)) [] (
fun env get_actor get_func ->
Arr.lit env Tagged.S [get_actor; get_func]
)
let fail_assert env at =
let open Source in
let at = {
left = {at.left with file = Filename.basename at.left.file};
right = {at.right with file = Filename.basename at.right.file}
}
in
E.trap_with env (Printf.sprintf "assertion failed at %s" (string_of_region at))
let async_method_name = Type.(motoko_async_helper_fld.lab)
let gc_trigger_method_name = Type.(motoko_gc_trigger_fld.lab)
let is_self_call env =
let (set_len_self, get_len_self) = new_local env "len_self" in
let (set_len_caller, get_len_caller) = new_local env "len_caller" in
system_call env "canister_self_size" ^^ set_len_self ^^
system_call env "msg_caller_size" ^^ set_len_caller ^^
get_len_self ^^ get_len_caller ^^ compile_comparison I64Op.Eq ^^
E.if1 I64Type
begin
get_len_self ^^ Stack.dynamic_with_bytes env "str_self" (fun get_str_self ->
get_len_caller ^^ Stack.dynamic_with_bytes env "str_caller" (fun get_str_caller ->
get_str_caller ^^ compile_unboxed_const 0L ^^ get_len_caller ^^
system_call env "msg_caller_copy" ^^
get_str_self ^^ compile_unboxed_const 0L ^^ get_len_self ^^
system_call env "canister_self_copy" ^^
get_str_self ^^ get_str_caller ^^ get_len_self ^^ Heap.memcmp env ^^
compile_eq_const 0L))
end
begin
compile_unboxed_const 0L
end
let assert_caller_self env =
is_self_call env ^^
E.else_trap_with env "not a self-call"
let is_controller_call env =
let (set_len_caller, get_len_caller) = new_local env "len_caller" in
system_call env "msg_caller_size" ^^ set_len_caller ^^
get_len_caller ^^ Stack.dynamic_with_bytes env "str_caller" (fun get_str_caller ->
get_str_caller ^^ compile_unboxed_const 0L ^^ get_len_caller ^^
system_call env "msg_caller_copy" ^^
get_str_caller ^^ get_len_caller ^^ is_controller env)
let assert_caller_self_or_controller env =
is_self_call env ^^
is_controller_call env ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Or)) ^^
E.else_trap_with env "not a self-call or call from controller"
(* Cycles *)
let cycle_balance env =
match E.mode env with
| Flags.(ICMode | RefMode) ->
system_call env "canister_cycle_balance128"
| _ ->
E.trap_with env "cannot read balance when running locally"
let cycles_add env =
match E.mode env with
| Flags.(ICMode | RefMode) ->
system_call env "call_cycles_add128"
| _ ->
E.trap_with env "cannot accept cycles when running locally"
let cycles_accept env =
match E.mode env with
| Flags.(ICMode | RefMode) ->
system_call env "msg_cycles_accept128"
| _ ->
E.trap_with env "cannot accept cycles when running locally"
let cycles_available env =
match E.mode env with
| Flags.(ICMode | RefMode) ->
system_call env "msg_cycles_available128"
| _ ->
E.trap_with env "cannot get cycles available when running locally"
let cycles_refunded env =
match E.mode env with
| Flags.(ICMode | RefMode) ->
system_call env "msg_cycles_refunded128"
| _ ->
E.trap_with env "cannot get cycles refunded when running locally"
let cycles_burn env =
match E.mode env with
| Flags.(ICMode | RefMode) ->
system_call env "cycles_burn128"
| _ ->
E.trap_with env "cannot burn cycles when running locally"
let set_certified_data env =
match E.mode env with
| Flags.(ICMode | RefMode) ->
Blob.as_ptr_len env ^^
system_call env "certified_data_set"
| _ ->
E.trap_with env "cannot set certified data when running locally"
let get_certificate env =
match E.mode env with
| Flags.(ICMode | RefMode) ->
system_call env "data_certificate_present" ^^
Bool.from_rts_int32 ^^
E.if1 I64Type
begin
Opt.inject_simple env (
Blob.of_size_copy env Tagged.B
(fun env ->
system_call env "data_certificate_size")
(fun env ->
system_call env "data_certificate_copy")
(fun env -> compile_unboxed_const 0L)
)
end (Opt.null_lit env)
| _ ->
E.trap_with env "cannot get certificate when running locally"
end (* IC *)
module Cycles = struct
let from_word128_ptr env = Func.share_code1 Func.Never env "from_word128_ptr" ("ptr", I64Type) [I64Type]
(fun env get_ptr ->
let set_lower, get_lower = new_local env "lower" in
get_ptr ^^
G.i (Load {ty = I64Type; align = 0; offset = 0L; sz = None }) ^^
BigNum.from_word64 env ^^
set_lower ^^
get_ptr ^^
G.i (Load {ty = I64Type; align = 0; offset = 8L; sz = None }) ^^
compile_test I64Op.Eqz ^^
E.if1 I64Type
get_lower
begin
get_lower ^^
get_ptr ^^
G.i (Load {ty = I64Type; align = 0; offset = 8L; sz = None }) ^^
BigNum.from_word64 env ^^
(* shift left 64 bits *)
compile_unboxed_const 64L ^^
TaggedSmallWord.msb_adjust Type.Nat32 ^^
BigNum.compile_lsh env ^^
BigNum.compile_add env
end)
(* takes a bignum from the stack, traps if ≥2^128, and leaves two 64bit words on the stack *)
(* only used twice, so ok to not use share_code1; that would require I64Type support in FakeMultiVal *)
let to_two_word64 env =
let (set_val, get_val) = new_local env "cycles" in
set_val ^^
get_val ^^
Tagged.materialize_shared_value env (BigNum.constant env (Big_int.power_int_positive_int 2 128)) ^^
BigNum.compile_relop env Lt ^^
E.else_trap_with env "cycles out of bounds" ^^
get_val ^^
(* shift right 64 bits *)
compile_unboxed_const 64L ^^
TaggedSmallWord.msb_adjust Type.Nat32 ^^
BigNum.compile_rsh env ^^
BigNum.truncate_to_word64 env ^^
get_val ^^
BigNum.truncate_to_word64 env
let balance env =
Func.share_code0 Func.Always env "cycle_balance" [I64Type] (fun env ->
Stack.with_words env "dst" 2L (fun get_dst ->
get_dst ^^
IC.cycle_balance env ^^
get_dst ^^
from_word128_ptr env
)
)
let add env =
Func.share_code1 Func.Always env "cycle_add" ("cycles", I64Type) [] (fun env get_x ->
get_x ^^
to_two_word64 env ^^
IC.cycles_add env
)
let accept env =
Func.share_code1 Func.Always env "cycle_accept" ("cycles", I64Type) [I64Type] (fun env get_x ->
Stack.with_words env "dst" 2L (fun get_dst ->
get_x ^^
to_two_word64 env ^^
get_dst ^^
IC.cycles_accept env ^^
get_dst ^^
from_word128_ptr env
)
)
let available env =
Func.share_code0 Func.Always env "cycle_available" [I64Type] (fun env ->
Stack.with_words env "dst" 2L (fun get_dst ->
get_dst ^^
IC.cycles_available env ^^
get_dst ^^
from_word128_ptr env
)
)
let refunded env =
Func.share_code0 Func.Always env "cycle_refunded" [I64Type] (fun env ->
Stack.with_words env "dst" 2L (fun get_dst ->
get_dst ^^
IC.cycles_refunded env ^^
get_dst ^^
from_word128_ptr env
)
)
let burn env =
Func.share_code1 Func.Always env "cycle_burn" ("cycles", I64Type) [I64Type] (fun env get_x ->
Stack.with_words env "dst" 2L (fun get_dst ->
get_x ^^
to_two_word64 env ^^
get_dst ^^
IC.cycles_burn env ^^
get_dst ^^
from_word128_ptr env
)
)
end (* Cycles *)
(* Low-level, almost raw access to IC stable memory.
Essentially a virtual page allocator
* enforcing limit --max-stable-pages not exceeded
* tracking virtual page count, ignoring physical pages added for stable variable serialization (global`__stable_mem_size`)
* recording current format of contents (global `__stable_version`)
Used to implement stable variable serialization, (experimental) stable memory library and Region type (see region.rs)
*)
module StableMem = struct
(* Raw stable memory API,
using ic0.stable64_xxx or
emulating via (for now) 64-bit memory 1
*)
let stable64_grow env =
E.require_stable_memory env;
match E.mode env with
| Flags.ICMode | Flags.RefMode ->
IC.system_call env "stable64_grow"
| _ ->
Func.share_code1 Func.Always env "stable64_grow" ("pages", I64Type) [I64Type]
(fun env get_pages ->
let set_old_pages, get_old_pages = new_local env "old_pages" in
get_pages ^^
G.i StableGrow ^^
set_old_pages ^^
get_old_pages ^^
compile_unboxed_const (-1L) ^^
compile_comparison I64Op.Eq ^^
E.if1 I64Type
begin
compile_unboxed_const (-1L)
end
begin
get_old_pages
end)
let stable64_size env =
E.require_stable_memory env;
match E.mode env with
| Flags.ICMode | Flags.RefMode ->
IC.system_call env "stable64_size"
| _ ->
Func.share_code0 Func.Always env "stable64_size" [I64Type]
(fun env ->
G.i StableSize)
let stable64_read env =
E.require_stable_memory env;
match E.mode env with
| Flags.ICMode | Flags.RefMode ->
IC.system_call env "stable64_read"
| _ ->
Func.share_code3 Func.Always env "stable64_read"
(("dst", I64Type), ("offset", I64Type), ("size", I64Type)) []
(fun env get_dst get_offset get_size ->
get_dst ^^
get_offset ^^
get_size ^^
G.i StableRead)
let stable64_write env =
E.require_stable_memory env;
match E.mode env with
| Flags.ICMode | Flags.RefMode ->
IC.system_call env "stable64_write"
| _ ->
Func.share_code3 Func.Always env "stable64_write"
(("offset", I64Type), ("src", I64Type), ("size", I64Type)) []
(fun env get_offset get_src get_size ->
get_offset ^^
get_src ^^
get_size ^^
G.i StableWrite)
(* Versioning (c.f. Region.rs) *)
(* NB: these constants must agree with the constants in Region.rs *)
let legacy_version_no_stable_memory = Int64.of_int 0 (* never manifest in serialized form *)
let legacy_version_some_stable_memory = Int64.of_int 1
let legacy_version_regions = Int64.of_int 2
let version_graph_copy_no_regions = Int64.of_int 3
let version_graph_copy_regions = Int64.of_int 4
let version_stable_heap_no_regions = Int64.of_int 5
let version_stable_heap_regions = Int64.of_int 6
let version_max = version_stable_heap_regions
let register_globals env =
(* size (in pages) *)
E.add_global64 env "__stablemem_size" Mutable 0L;
E.add_global64 env "__stablemem_version" Mutable version_stable_heap_no_regions
let get_mem_size env =
G.i (GlobalGet (nr (E.get_global env "__stablemem_size")))
let set_mem_size env =
G.i (GlobalSet (nr (E.get_global env "__stablemem_size")))
let get_version env =
G.i (GlobalGet (nr (E.get_global env "__stablemem_version")))
let set_version env =
G.i (GlobalSet (nr (E.get_global env "__stablemem_version")))
let region_init env =
compile_unboxed_const (if !Flags.use_stable_regions then 1L else 0L) ^^
E.call_import env "rts" "region_init"
(* stable memory bounds check *)
let guard env =
get_mem_size env ^^
compile_unboxed_const (Int64.of_int page_size_bits) ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Shl)) ^^
compile_comparison I64Op.GeU ^^
E.then_trap_with env "StableMemory offset out of bounds"
(* check both offset and [offset,.., offset + size) within bounds *)
(* c.f. region.rs check_relative_range *)
(* TODO: specialize on size *)
let guard_range env =
Func.share_code2 Func.Always env "__stablemem_guard_range"
(("offset", I64Type), ("size", I64Type)) []
(fun env get_offset get_size ->
get_size ^^
compile_unboxed_one ^^
compile_comparison I64Op.LeU ^^
E.if0 begin
get_offset ^^
guard env
end
begin
compile_unboxed_const (Int64.minus_one) ^^
get_size ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Sub)) ^^
get_offset ^^
compile_comparison I64Op.LtU ^^
E.then_trap_with env "StableMemory range overflow" ^^
get_offset ^^
get_size ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Add)) ^^
get_mem_size env ^^
compile_unboxed_const (Int64.of_int page_size_bits) ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Shl)) ^^
compile_comparison I64Op.GtU ^^
E.then_trap_with env "StableMemory range out of bounds"
end)
let add_guard env guarded get_offset bytes =
if guarded then
(get_offset ^^
if bytes = 1L then
guard env
else
compile_unboxed_const bytes ^^
guard_range env)
else G.nop
(* TODO: crusso in read/write could avoid stack allocation by reserving and re-using scratch memory instead *)
let read env guarded name typ bytes load =
Func.share_code1 Func.Never env (Printf.sprintf "__stablemem_%sread_%s" (if guarded then "guarded_" else "") name)
("offset", I64Type) [typ]
(fun env get_offset ->
let words = Int64.div (Int64.add bytes 3L) 4L in
add_guard env guarded get_offset bytes ^^
Stack.with_words env "temp_ptr" words (fun get_temp_ptr ->
get_temp_ptr ^^
get_offset ^^
compile_unboxed_const bytes ^^
stable64_read env ^^
get_temp_ptr ^^ load))
let write env guarded name typ bytes store =
Func.share_code2 Func.Never env (Printf.sprintf "__stablemem_%swrite_%s" (if guarded then "guarded_" else "") name)
(("offset", I64Type), ("value", typ)) []
(fun env get_offset get_value ->
let words = Int64.div (Int64.add bytes 3L) 4L in
add_guard env guarded get_offset bytes ^^
Stack.with_words env "temp_ptr" words (fun get_temp_ptr ->
get_temp_ptr ^^ get_value ^^ store ^^
get_offset ^^
get_temp_ptr ^^
compile_unboxed_const bytes ^^
stable64_write env))
let load_word32 = G.i (Load {ty = I32Type; align = 0; offset = 0L; sz = None})
let store_word32 : G.t = G.i (Store {ty = I32Type; align = 0; offset = 0L; sz = None})
let write_word32 env =
write env false "word32" I32Type 4L store_word32
let write_word64 env =
write env false "word64" I64Type 8L store_unskewed_ptr
let read_word32 env =
read env false "word32" I32Type 4L load_word32
let read_word64 env =
read env false "word64" I64Type 8L load_unskewed_ptr
(* ensure_pages : ensure at least num pages allocated,
growing (real) stable memory if needed *)
let ensure_pages env =
Func.share_code1 Func.Always env "__stablemem_ensure_pages"
("pages", I64Type) [I64Type]
(fun env get_pages ->
let (set_size, get_size) = new_local env "size" in
let (set_pages_needed, get_pages_needed) = new_local env "pages_needed" in
stable64_size env ^^
set_size ^^
get_pages ^^
get_size ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Sub)) ^^
set_pages_needed ^^
get_pages_needed ^^
compile_unboxed_const 0L ^^
compile_comparison I64Op.GtS ^^
E.if1 I64Type
(get_pages_needed ^^
stable64_grow env)
get_size)
(* ensure stable memory includes [offset..offset+size), assumes size > 0 *)
let ensure env =
Func.share_code2 Func.Always env "__stablemem_ensure"
(("offset", I64Type), ("size", I64Type)) []
(fun env get_offset get_size ->
let (set_sum, get_sum) = new_local env "sum" in
get_offset ^^
get_size ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Add)) ^^
set_sum ^^
(* check for overflow *)
get_sum ^^
get_offset ^^
compile_comparison I64Op.LtU ^^
E.then_trap_with env "Range overflow" ^^
(* ensure page *)
get_sum ^^
compile_unboxed_const (Int64.of_int page_size_bits) ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.ShrU)) ^^
compile_add_const 1L ^^
ensure_pages env ^^
(* Check result *)
compile_unboxed_const 0L ^^
compile_comparison I64Op.LtS ^^
E.then_trap_with env "Out of stable memory.")
(* low-level grow, respecting --max-stable-pages *)
let grow env =
Func.share_code1 Func.Always env "__stablemem_grow"
("pages", I64Type) [I64Type] (fun env get_pages ->
let (set_size, get_size) = new_local env "size" in
get_mem_size env ^^
set_size ^^
(* check within --max-stable-pages *)
get_size ^^
get_pages ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Add)) ^^
compile_unboxed_const (Int64.of_int (!Flags.max_stable_pages)) ^^
compile_comparison I64Op.GtU ^^
E.if1 I64Type
begin
compile_unboxed_const (-1L) ^^
G.i Return
end
begin
let (set_new_size, get_new_size) = new_local env "new_size" in
get_size ^^
get_pages ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Add)) ^^
set_new_size ^^
(* physical grow if necessary *)
let (set_ensured, get_ensured) = new_local env "ensured" in
get_new_size ^^
ensure_pages env ^^
set_ensured ^^
(* Check result *)
get_ensured ^^
compile_unboxed_const 0L ^^
compile_comparison I64Op.LtS ^^
E.if1 I64Type
((* propagate failure -1; preserve logical size *)
get_ensured)
((* update logical size *)
get_new_size ^^
set_mem_size env ^^
(* return old logical size *)
get_size)
end)
let load_word32 env =
read env true "word32" I32Type 4L
(G.i (Load {ty = I32Type; align = 0; offset = 0L; sz = None }))
let store_word32 env =
write env true "word32" I32Type 4L
(G.i (Store {ty = I32Type; align = 0; offset = 0L; sz = None}))
let load_word8 env =
read env true "word8" I32Type 1L
(G.i (Load {ty = I32Type; align = 0; offset = 0L; sz = Some Wasm_exts.Types.(Pack8, ZX)}))
let store_word8 env =
write env true "word8" I32Type 1L
(G.i (Store {ty = I32Type; align = 0; offset = 0L; sz = None}))
let load_word16 env =
read env true "word16" I32Type 2L
(G.i (Load {ty = I32Type; align = 0; offset = 0L; sz = Some Wasm_exts.Types.(Pack16, ZX)}))
let store_word16 env =
write env true "word16" I32Type 2L
(G.i (Store {ty = I32Type; align = 0; offset = 0L; sz = None}))
let load_word64 env =
read env true "word64" I64Type 8L load_unskewed_ptr
let store_word64 env =
write env true "word64" I64Type 8L store_unskewed_ptr
let load_float64 env =
read env true "float64" F64Type 8L
(G.i (Load {ty = F64Type; align = 0; offset = 0L; sz = None }))
let store_float64 env =
write env true "float64" F64Type 8L
(G.i (Store {ty = F64Type; align = 0; offset = 0L; sz = None}))
let load_blob env =
Func.share_code2 Func.Always env "__stablemem_load_blob"
(("offset", I64Type), ("len", I64Type)) [I64Type]
(fun env get_offset get_len ->
let (set_blob, get_blob) = new_local env "blob" in
get_offset ^^
get_len ^^
guard_range env ^^
Blob.alloc env Tagged.B get_len ^^ set_blob ^^
get_blob ^^ Blob.payload_ptr_unskewed env ^^
get_offset ^^
get_len ^^
stable64_read env ^^
get_blob)
let store_blob env =
Func.share_code2 Func.Always env "__stablemem_store_blob"
(("offset", I64Type), ("blob", I64Type)) []
(fun env get_offset get_blob ->
let (set_len, get_len) = new_local env "len" in
get_blob ^^ Blob.len env ^^ set_len ^^
get_offset ^^
get_len ^^
guard_range env ^^
get_offset ^^
get_blob ^^ Blob.payload_ptr_unskewed env ^^
get_len ^^
stable64_write env)
end (* StableMem *)
(* StableMemoryInterface *)
(* Core, legacy interface to IC stable memory, used to implement prims `stableMemoryXXX` of
library `ExperimentalStableMemory.mo`.
Each operation dispatches on the state of `StableMem.get_version()`.
* StableMem.version_stable_heap_no_regions
* use StableMem directly.
* StableMem.version_stable_heap_regions: use Region.mo
*)
module StableMemoryInterface = struct
(* Helpers *)
let get_region0 env = E.call_import env "rts" "region0_get"
let if_regions env args tys is1 is2 =
StableMem.get_version env ^^
compile_unboxed_const StableMem.version_stable_heap_regions ^^
compile_comparison I64Op.Eq ^^
E.if_ env tys
(get_region0 env ^^ args ^^ is1 env)
(args ^^ is2 env)
(* Prims *)
let size env =
E.require_stable_memory env;
Func.share_code0 Func.Always env "__stablememory_size" [I64Type]
(fun env ->
if_regions env
G.nop
[I64Type]
Region.size
StableMem.get_mem_size)
let grow env =
E.require_stable_memory env;
Func.share_code1 Func.Always env "__stablememory_grow" ("pages", I64Type) [I64Type]
(fun env get_pages ->
if_regions env
get_pages
[I64Type]
Region.grow
(fun env ->
(* logical grow *)
StableMem.grow env))
let load_blob env =
E.require_stable_memory env;
Func.share_code2 Func.Never env "__stablememory_load_blob"
(("offset", I64Type), ("len", I64Type)) [I64Type]
(fun env offset len ->
if_regions env
(offset ^^ len)
[I64Type]
Region.load_blob
StableMem.load_blob)
let store_blob env =
E.require_stable_memory env;
Func.share_code2 Func.Never env "__stablememory_store_blob"
(("offset", I64Type), ("blob", I64Type)) []
(fun env offset blob ->
if_regions env
(offset ^^ blob)
[]
Region.store_blob
StableMem.store_blob)
let load_word8 env =
E.require_stable_memory env;
Func.share_code1 Func.Never env "__stablememory_load_word8"
("offset", I64Type) [I32Type]
(fun env offset ->
if_regions env
offset
[I32Type]
Region.load_word8
StableMem.load_word8)
let store_word8 env =
E.require_stable_memory env;
Func.share_code2 Func.Never env "__stablememory_store_word8"
(("offset", I64Type), ("value", I32Type)) []
(fun env offset value ->
if_regions env
(offset ^^ value)
[]
Region.store_word8
StableMem.store_word8)
let load_word16 env =
E.require_stable_memory env;
Func.share_code1 Func.Never env "__stablememory_load_word16"
("offset", I64Type) [I32Type]
(fun env offset->
if_regions env
offset
[I32Type]
Region.load_word16
StableMem.load_word16)
let store_word16 env =
E.require_stable_memory env;
Func.share_code2 Func.Never env "__stablememory_store_word16"
(("offset", I64Type), ("value", I32Type)) []
(fun env offset value ->
if_regions env
(offset ^^ value)
[]
Region.store_word16
StableMem.store_word16)
let load_word32 env =
E.require_stable_memory env;
Func.share_code1 Func.Never env "__stablememory_load_word32"
("offset", I64Type) [I32Type]
(fun env offset ->
if_regions env
offset
[I32Type]
Region.load_word32
StableMem.load_word32)
let store_word32 env =
E.require_stable_memory env;
Func.share_code2 Func.Never env "__stablememory_store_word32"
(("offset", I64Type), ("value", I32Type)) []
(fun env offset value ->
if_regions env
(offset ^^ value)
[]
Region.store_word32
StableMem.store_word32)
let load_word64 env =
E.require_stable_memory env;
Func.share_code1 Func.Never env "__stablememory_load_word64" ("offset", I64Type) [I64Type]
(fun env offset ->
if_regions env
offset
[I64Type]
Region.load_word64
StableMem.load_word64)
let store_word64 env =
E.require_stable_memory env;
Func.share_code2 Func.Never env "__stablememory_store_word64"
(("offset", I64Type), ("value", I64Type)) []
(fun env offset value ->
if_regions env
(offset ^^ value)
[]
Region.store_word64
StableMem.store_word64)
let load_float64 env =
E.require_stable_memory env;
Func.share_code1 Func.Never env "__stablememory_load_float64"
("offset", I64Type) [F64Type]
(fun env offset ->
if_regions env
offset
[F64Type]
Region.load_float64
StableMem.load_float64)
let store_float64 env =
Func.share_code2 Func.Never env "__stablememory_store_float64"
(("offset", I64Type), ("value", F64Type)) []
(fun env offset value ->
if_regions env
(offset ^^ value)
[]
Region.store_float64
StableMem.store_float64)
end
module UpgradeStatistics = struct
let get_upgrade_instructions env =
E.call_import env "rts" "get_upgrade_instructions"
let set_upgrade_instructions env =
E.call_import env "rts" "set_upgrade_instructions"
let add_instructions env =
get_upgrade_instructions env ^^
GC.instruction_counter env ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Add)) ^^
set_upgrade_instructions env
let set_instructions env =
GC.instruction_counter env ^^
set_upgrade_instructions env
end
module RTS_Exports = struct
(* Must be called late, after main codegen, to ensure correct generation of
of functioning or unused-but-trapping stable memory exports (as required)
*)
let system_exports env =
(* Value constructors *)
let int_from_i64_fi = E.add_fun env "int_from_i64" (
Func.of_body env ["v", I64Type] [I64Type] (fun env ->
let get_v = G.i (LocalGet (nr 0l)) in
get_v ^^ BigNum.from_signed_word64 env
)
) in
E.add_export env (nr {
name = Lib.Utf8.decode "int_from_i64";
edesc = nr (FuncExport (nr int_from_i64_fi))
});
(* Traps *)
let bigint_trap_fi = E.add_fun env "bigint_trap" (
Func.of_body env [] [] (fun env ->
E.trap_with env "bigint function error"
)
) in
E.add_export env (nr {
name = Lib.Utf8.decode "bigint_trap";
edesc = nr (FuncExport (nr bigint_trap_fi))
});
(* Keep a memory reserve when in update or init state.
This reserve can be used by queries, composite queries, and upgrades. *)
let keep_memory_reserve_fi = E.add_fun env "keep_memory_reserve" (
Func.of_body env [] [I32Type] (fun env ->
Lifecycle.get env ^^
compile_eq_const Lifecycle.(int_of_state InUpdate) ^^
Lifecycle.get env ^^
compile_eq_const Lifecycle.(int_of_state InInit) ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Or)) ^^
Bool.to_rts_int32
)
) in
E.add_export env (nr {
name = Lib.Utf8.decode "keep_memory_reserve";
edesc = nr (FuncExport (nr keep_memory_reserve_fi))
});
let rts_trap_fi = E.add_fun env "rts_trap" (
(* `libc` still uses 32-bit length parameter for `rts_trap` *)
Func.of_body env ["str", I64Type; "len", I32Type] [] (fun env ->
let get_str = G.i (LocalGet (nr 0l)) in
let get_len = G.i (LocalGet (nr 1l)) in
get_str ^^
get_len ^^
G.i (Convert (Wasm_exts.Values.I64 I64Op.ExtendUI32)) ^^
IC.trap_ptr_len env
)
) in
E.add_export env (nr {
name = Lib.Utf8.decode "rts_trap";
edesc = nr (FuncExport (nr rts_trap_fi))
});
let ic0_performance_counter_fi =
if E.mode env = Flags.WASIMode then
E.add_fun env "ic0_performance_counter" (
Func.of_body env ["number", I32Type] [I64Type]
(fun env ->
E.trap_with env "ic0_performance_counter is not supposed to be called in WASI"
)
)
else E.reuse_import env "ic0" "performance_counter" in
E.add_export env (nr {
name = Lib.Utf8.decode "ic0_performance_counter";
edesc = nr (FuncExport (nr ic0_performance_counter_fi))
});
(* Keep a memory reserve when in update or init state.
This reserve can be used by queries, composite queries, and (graph-copy) upgrades. *)
let keep_memory_reserve_fi = E.add_fun env "keep_memory_reserve" (
Func.of_body env [] [I32Type] (fun env ->
Lifecycle.(is_in int_of_state InUpdate) ^^
Lifecycle.(is_in int_of_state InInit) ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Or)) ^^
Bool.to_rts_int32
)
) in
E.add_export env (nr {
name = Lib.Utf8.decode "keep_memory_reserve";
edesc = nr (FuncExport (nr keep_memory_reserve_fi))
});
let when_stable_memory_required_else_trap env code =
if E.requires_stable_memory env then
code() else
E.trap_with env "unreachable" in
let ic0_stable64_write_fi =
match E.mode env with
| Flags.ICMode | Flags.RefMode ->
E.reuse_import env "ic0" "stable64_write"
| Flags.WASIMode | Flags.WasmMode ->
E.add_fun env "ic0_stable64_write" (
Func.of_body env ["offset", I64Type; "src", I64Type; "size", I64Type] []
(fun env ->
when_stable_memory_required_else_trap env (fun () ->
let get_offset = G.i (LocalGet (nr 0l)) in
let get_src = G.i (LocalGet (nr 1l)) in
let get_size = G.i (LocalGet (nr 2l)) in
get_offset ^^
get_src ^^
get_size ^^
StableMem.stable64_write env))
)
in
E.add_export env (nr {
name = Lib.Utf8.decode "ic0_stable64_write";
edesc = nr (FuncExport (nr ic0_stable64_write_fi))
});
let ic0_stable64_read_fi =
match E.mode env with
| Flags.ICMode | Flags.RefMode ->
E.reuse_import env "ic0" "stable64_read"
| Flags.WASIMode | Flags.WasmMode ->
E.add_fun env "ic0_stable64_read" (
Func.of_body env ["dst", I64Type; "offset", I64Type; "size", I64Type] []
(fun env ->
when_stable_memory_required_else_trap env (fun () ->
let get_dst = G.i (LocalGet (nr 0l)) in
let get_offset = G.i (LocalGet (nr 1l)) in
let get_size = G.i (LocalGet (nr 2l)) in
get_dst ^^
get_offset ^^
get_size ^^
StableMem.stable64_read env))
)
in
E.add_export env (nr {
name = Lib.Utf8.decode "ic0_stable64_read";
edesc = nr (FuncExport (nr ic0_stable64_read_fi))
});
let ic0_stable64_size_fi =
match E.mode env with
| Flags.ICMode | Flags.RefMode ->
E.reuse_import env "ic0" "stable64_size"
| Flags.WASIMode | Flags.WasmMode ->
E.add_fun env "ic0_stable64_size" (
Func.of_body env [] [I64Type]
(fun env ->
if E.requires_stable_memory env then
StableMem.stable64_size env
else
(* The RTS also checks the persistence mode on Wasi without stable memory support *)
compile_unboxed_const 0L
)
)
in
E.add_export env (nr {
name = Lib.Utf8.decode "ic0_stable64_size";
edesc = nr (FuncExport (nr ic0_stable64_size_fi))
});
let ic0_stable64_grow_fi =
match E.mode env with
| Flags.ICMode | Flags.RefMode ->
E.reuse_import env "ic0" "stable64_grow"
| Flags.WASIMode | Flags.WasmMode ->
E.add_fun env "ic0_stable64_grow" (
Func.of_body env ["newPages", I64Type] [I64Type]
(fun env ->
when_stable_memory_required_else_trap env (fun () ->
G.i (LocalGet (nr 0l)) ^^
StableMem.stable64_grow env))
)
in
E.add_export env (nr {
name = Lib.Utf8.decode "ic0_stable64_grow";
edesc = nr (FuncExport (nr ic0_stable64_grow_fi))
});
let moc_stable_mem_grow_fi =
E.add_fun env "moc_stable_mem_grow" (
Func.of_body env ["newPages", I64Type] [I64Type]
(fun env ->
when_stable_memory_required_else_trap env (fun () ->
G.i (LocalGet (nr 0l)) ^^
StableMem.grow env))
)
in
E.add_export env (nr {
name = Lib.Utf8.decode "moc_stable_mem_grow";
edesc = nr (FuncExport (nr moc_stable_mem_grow_fi))
});
let moc_stable_mem_get_size_fi =
E.add_fun env "moc_stable_mem_get_size" (
Func.of_body env [] [I64Type]
(fun env ->
when_stable_memory_required_else_trap env (fun () ->
StableMem.get_mem_size env))
)
in
E.add_export env (nr {
name = Lib.Utf8.decode "moc_stable_mem_get_size";
edesc = nr (FuncExport (nr moc_stable_mem_get_size_fi))
});
let moc_stable_mem_set_size_fi =
E.add_fun env "moc_stable_mem_set_size" (
Func.of_body env ["pages", I64Type] []
(fun env ->
match E.mode env with
| Flags.ICMode | Flags.RefMode ->
G.i (LocalGet (nr 0l)) ^^
StableMem.set_mem_size env
| _ ->
E.trap_with env "moc_stable_mem_set_size is not supposed to be called in WASI" (* improve me *)
)
)
in
E.add_export env (nr {
name = Lib.Utf8.decode "moc_stable_mem_set_size";
edesc = nr (FuncExport (nr moc_stable_mem_set_size_fi))
});
let moc_stable_mem_get_version_fi =
E.add_fun env "moc_stable_mem_get_version" (
Func.of_body env [] [I64Type]
(fun env ->
StableMem.get_version env)
)
in
E.add_export env (nr {
name = Lib.Utf8.decode "moc_stable_mem_get_version";
edesc = nr (FuncExport (nr moc_stable_mem_get_version_fi))
});
let moc_stable_mem_set_version_fi =
E.add_fun env "moc_stable_mem_set_version" (
Func.of_body env ["version", I64Type] []
(fun env ->
G.i (LocalGet (nr 0l)) ^^
StableMem.set_version env
)
)
in
E.add_export env (nr {
name = Lib.Utf8.decode "moc_stable_mem_set_version";
edesc = nr (FuncExport (nr moc_stable_mem_set_version_fi))
});
E.add_export env (nr {
name = Lib.Utf8.decode "idl_limit_check";
edesc = nr (FuncExport (nr (E.built_in env "idl_limit_check")))
})
end (* RTS_Exports *)
module Serialization = struct
(*
The general serialization strategy is as follows:
* We statically generate the IDL type description header.
* We traverse the data to calculate the size needed for the data buffer and the
reference buffer.
* We allocate memory for the data buffer and the reference buffer
(this memory area is not referenced, so will be dead with the next GC)
* We copy the IDL type header to the data buffer.
* We traverse the data and serialize it into the data buffer.
This is type driven, and we use the `share_code` machinery and names that
properly encode the type to resolve loops in a convenient way.
* We externalize all that new data space into a databuf
* We externalize the reference space into a elembuf
* We pass both databuf and elembuf to shared functions
(this mimicks the future system API)
The deserialization is analogous:
* We allocate some scratch space, and internalize the databuf and elembuf into it.
* We parse the data, in a type-driven way, using normal construction and
allocation, while keeping tabs on the type description header for subtyping.
* At the end, the scratch space is a hole in the heap, and will be reclaimed
by the next GC.
*)
module Strm = struct
(* Creates a fresh stream with header, storing stream token. *)
let create env get_data_size set_data_buf get_data_buf header =
let header_size = Int64.of_int (String.length header) in
get_data_size ^^ compile_add_const header_size ^^
Blob.dyn_alloc_scratch env ^^ set_data_buf ^^
get_data_buf ^^
Blob.lit env Tagged.B header ^^ Blob.payload_ptr_unskewed env ^^
compile_unboxed_const header_size ^^
Heap.memcpy env ^^
get_data_buf ^^ compile_add_const header_size ^^ set_data_buf
(* Checks the stream's filling, traps if unexpected *)
let check_filled env get_data_buf get_data_size =
get_data_buf ^^ get_data_size ^^ G.i (Binary (Wasm_exts.Values.I64 I64Op.Add)) ^^
compile_comparison I64Op.Eq ^^
E.else_trap_with env "data buffer not filled"
(* Finishes the stream, performing consistency checks.
Returns payload address and size including the header. *)
let terminate env get_data_buf get_data_size header_size =
get_data_buf ^^ compile_sub_const header_size ^^
get_data_size ^^ compile_add_const header_size
(* Builds a unique name for a name seed and a type. *)
let name_for fn_name ts = "@" ^ fn_name ^ "<" ^ Typ_hash.typ_seq_hash ts ^ ">"
let advance_data_buf get_data_buf =
get_data_buf ^^ G.i (Binary (Wasm_exts.Values.I64 I64Op.Add)) ^^ G.setter_for get_data_buf
(* Pushes the stream's current absolute byte offset on stack.
The requirement is that the difference between two uses
of this method must give a correct _relative_ offset. *)
let absolute_offset _env get_data_buf = get_data_buf
(* Opportunity to flush or update the token. Stream token is on stack. *)
let checkpoint _env get_data_buf = G.setter_for get_data_buf
(* Reserve a small fixed number of bytes in the stream and return an
address to it. The address is invalidated by a GC, and as such must
be written to in the next few instructions. *)
let reserve _env get_data_buf bytes =
get_data_buf ^^ get_data_buf ^^ compile_add_const bytes ^^ G.setter_for get_data_buf
let write_word_leb env get_data_buf code =
let set_word, get_word = new_local env "word" in
code ^^ set_word ^^
I32Leb.compile_store_to_data_buf_unsigned env get_word get_data_buf ^^
advance_data_buf get_data_buf
let write_word_32 env get_data_buf code =
let word32_size = 4L in
get_data_buf ^^ code ^^ G.i (Convert (Wasm_exts.Values.I32 I32Op.WrapI64)) ^^
G.i (Store {ty = I32Type; align = 0; offset = 0L; sz = None}) ^^
compile_unboxed_const word32_size ^^
advance_data_buf get_data_buf
let write_byte _env get_data_buf code =
get_data_buf ^^ code ^^ G.i (Convert (Wasm_exts.Values.I32 I32Op.WrapI64)) ^^
G.i (Store {ty = I32Type; align = 0; offset = 0L; sz = Some Wasm_exts.Types.Pack8}) ^^
compile_unboxed_const 1L ^^ advance_data_buf get_data_buf
let write_blob env get_data_buf get_x =
let set_len, get_len = new_local env "len" in
get_x ^^ Blob.len env ^^ set_len ^^
write_word_leb env get_data_buf get_len ^^
get_data_buf ^^
get_x ^^ Blob.payload_ptr_unskewed env ^^
get_len ^^
Heap.memcpy env ^^
get_len ^^ advance_data_buf get_data_buf
let write_text env get_data_buf get_x =
let set_len, get_len = new_local env "len" in
get_x ^^ Text.size env ^^ set_len ^^
write_word_leb env get_data_buf get_len ^^
get_x ^^ get_data_buf ^^ Text.to_buf env ^^
get_len ^^ advance_data_buf get_data_buf
let write_bignum_leb env get_data_buf get_x =
get_data_buf ^^
get_x ^^
BigNum.compile_store_to_data_buf_unsigned env ^^
advance_data_buf get_data_buf
let write_bignum_sleb env get_data_buf get_x =
get_data_buf ^^
get_x ^^
BigNum.compile_store_to_data_buf_signed env ^^
advance_data_buf get_data_buf
end (* Strm *)
(* Globals recording known Candid types
See Note [Candid subtype checks]
*)
let register_delayed_globals env =
(E.add_global64_delayed env "__candid_data_length" Immutable,
E.add_global64_delayed env "__type_offsets_length" Immutable,
E.add_global64_delayed env "__idl_types_length" Immutable)
let get_candid_data_length env =
G.i (GlobalGet (nr (E.get_global env "__candid_data_length")))
let get_type_offsets_length env =
G.i (GlobalGet (nr (E.get_global env "__type_offsets_length")))
let get_idl_types_length env =
G.i (GlobalGet (nr (E.get_global env "__idl_types_length")))
let candid_type_offset_size = 8L
let get_global_type_descriptor env =
match !(E.(env.global_type_descriptor)) with
| Some descriptor -> descriptor
| None -> assert false
let get_global_candid_data env =
Tagged.share env (fun env ->
let descriptor = get_global_type_descriptor env in
Blob.load_data_segment env Tagged.B E.(descriptor.candid_data_segment) (get_candid_data_length env)
)
let get_global_type_offsets env =
Tagged.share env (fun env ->
let descriptor = get_global_type_descriptor env in
Blob.load_data_segment env Tagged.B E.(descriptor.type_offsets_segment) (get_type_offsets_length env)
)
let get_global_idl_types env =
Tagged.share env (fun env ->
let descriptor = get_global_type_descriptor env in
Blob.load_data_segment env Tagged.B E.(descriptor.idl_types_segment) (get_idl_types_length env)
)
module Registers = struct
(* interval for checking instruction counter *)
let idl_value_numerator = 1L
let idl_value_denominator = 1L
let idl_value_bias = 1024L
let register_globals env =
E.add_global64 env "@@rel_buf_opt" Mutable 0L;
E.add_global64 env "@@data_buf" Mutable 0L;
E.add_global64 env "@@ref_buf" Mutable 0L;
E.add_global64 env "@@typtbl" Mutable 0L;
E.add_global64 env "@@typtbl_end" Mutable 0L;
E.add_global64 env "@@typtbl_size" Mutable 0L;
E.add_global64 env "@@global_typtbl" Mutable 0L;
E.add_global64 env "@@global_typtbl_end" Mutable 0L;
E.add_global64 env "@@global_typtbl_size" Mutable 0L;
E.add_global64 env "@@value_denominator" Mutable idl_value_denominator;
E.add_global64 env "@@value_numerator" Mutable idl_value_numerator;
E.add_global64 env "@@value_bias" Mutable idl_value_bias;
E.add_global64 env "@@value_quota" Mutable 0L
let get_rel_buf_opt env =
G.i (GlobalGet (nr (E.get_global env "@@rel_buf_opt")))
let set_rel_buf_opt env =
G.i (GlobalSet (nr (E.get_global env "@@rel_buf_opt")))
let get_data_buf env =
G.i (GlobalGet (nr (E.get_global env "@@data_buf")))
let set_data_buf env =
G.i (GlobalSet (nr (E.get_global env "@@data_buf")))
let get_ref_buf env =
G.i (GlobalGet (nr (E.get_global env "@@ref_buf")))
let set_ref_buf env =
G.i (GlobalSet (nr (E.get_global env "@@ref_buf")))
let get_typtbl env =
G.i (GlobalGet (nr (E.get_global env "@@typtbl")))
let set_typtbl env =
G.i (GlobalSet (nr (E.get_global env "@@typtbl")))
let get_typtbl_end env =
G.i (GlobalGet (nr (E.get_global env "@@typtbl_end")))
let set_typtbl_end env =
G.i (GlobalSet (nr (E.get_global env "@@typtbl_end")))
let get_typtbl_size env =
G.i (GlobalGet (nr (E.get_global env "@@typtbl_size")))
let set_typtbl_size env =
G.i (GlobalSet (nr (E.get_global env "@@typtbl_size")))
let get_global_typtbl env =
G.i (GlobalGet (nr (E.get_global env "@@global_typtbl")))
let set_global_typtbl env =
G.i (GlobalSet (nr (E.get_global env "@@global_typtbl")))
let get_global_typtbl_end env =
G.i (GlobalGet (nr (E.get_global env "@@global_typtbl_end")))
let set_global_typtbl_end env =
G.i (GlobalSet (nr (E.get_global env "@@global_typtbl_end")))
let get_global_typtbl_size env =
G.i (GlobalGet (nr (E.get_global env "@@global_typtbl_size")))
let set_global_typtbl_size env =
G.i (GlobalSet (nr (E.get_global env "@@global_typtbl_size")))
(* Used as safety guard that no temporary pointers remain in the registers across GC increments. *)
let clear_registers env =
compile_unboxed_const 0L ^^ set_rel_buf_opt env ^^
compile_unboxed_const 0L ^^ set_data_buf env ^^
compile_unboxed_const 0L ^^ set_ref_buf env ^^
compile_unboxed_const 0L ^^ set_typtbl env ^^
compile_unboxed_const 0L ^^ set_typtbl_end env ^^
compile_unboxed_const 0L ^^ set_typtbl_size env ^^ (* also reset for symmetry, even if no pointer *)
compile_unboxed_const 0L ^^ set_global_typtbl env ^^
compile_unboxed_const 0L ^^ set_global_typtbl_end env ^^
compile_unboxed_const 0L ^^ set_global_typtbl_size env (* also reset for symmetry, even if no pointer *)
let get_value_quota env =
G.i (GlobalGet (nr (E.get_global env "@@value_quota")))
let set_value_quota env =
G.i (GlobalSet (nr (E.get_global env "@@value_quota")))
let get_value_numerator env =
G.i (GlobalGet (nr (E.get_global env "@@value_numerator")))
let set_value_numerator env =
G.i (GlobalSet (nr (E.get_global env "@@value_numerator")))
let get_value_denominator env =
G.i (GlobalGet (nr (E.get_global env "@@value_denominator")))
let set_value_denominator env =
G.i (GlobalSet (nr (E.get_global env "@@value_denominator")))
let get_value_bias env =
G.i (GlobalGet (nr (E.get_global env "@@value_bias")))
let set_value_bias env =
G.i (GlobalSet (nr (E.get_global env "@@value_bias")))
let reset_value_limit env get_blob get_rel_buf_opt =
get_rel_buf_opt ^^
E.if0
begin (* Candid deserialization *)
(* Set instruction limit *)
let (set_product, get_product) = new_local env "product" in
let (set_len, get_len) = new_local env "len" in
get_blob ^^
Blob.len env ^^
set_len ^^
get_len ^^
get_value_numerator env ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Mul)) ^^
get_value_denominator env ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.DivU)) ^^
set_product ^^
get_value_numerator env ^^ (* check overflow for non-zero numerator *)
(E.if0 begin
(* Saturate multiplication `len * idl_value_numerator` on overflow.
Ignore `idl_value_denomminator` on overflow. *)
compile_unboxed_const (-1L) ^^ (* u64::MAX *)
get_value_numerator env ^^ (* non-zero! *)
G.i (Binary (Wasm_exts.Values.I64 I64Op.DivU)) ^^
get_len ^^
compile_comparison I64Op.LtU ^^
(E.if0 begin
compile_unboxed_const (-1L) ^^ (* u64::MAX *)
set_product
end
G.nop)
end
G.nop) ^^
get_product ^^
get_value_bias env ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Add)) ^^
set_value_quota env ^^
(* Saturate value_quota on overflow *)
get_value_quota env ^^
get_product ^^
compile_comparison I64Op.LtU ^^
E.if0 begin
compile_unboxed_const (-1L) ^^ (* u64::MAX *)
set_value_quota env
end
G.nop
end
begin (* Extended candid/ Destabilization *)
G.nop
end
let define_idl_limit_check env =
Func.define_built_in env "idl_limit_check"
[("decrement", I32Type); ("count", I64Type)] [] (fun env ->
get_rel_buf_opt env ^^
E.if0 begin (* Candid deserialization *)
get_value_quota env ^^
G.i (LocalGet (nr 1l)) ^^ (* Count of values *)
compile_comparison I64Op.LtU ^^
E.then_trap_with env "IDL error: exceeded value limit" ^^
(* if (decrement) quota -= count *)
G.i (LocalGet (nr 0l)) ^^
Bool.from_rts_int32 ^^
E.if0 begin
get_value_quota env ^^
G.i (LocalGet (nr 1l)) ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Sub)) ^^
set_value_quota env
end
G.nop
end begin (* Extended Candid/Destabilization *)
G.nop
end)
let idl_limit_check env =
G.i (Call (nr (E.built_in env "idl_limit_check")))
end
open Typ_hash
let sort_by_hash fs =
List.sort
(fun (h1,_) (h2,_) -> Lib.Uint32.compare h1 h2)
(List.map (fun f -> (Idllib.Escape.unescape_hash f.Type.lab, f)) fs)
(* The IDL serialization prefaces the data with a type description.
We can statically create the type description in Ocaml code,
store it in the program, and just copy it to the beginning of the message.
At some point this can be factored into a function from Motoko type to IDL,
type and a function like this for IDL types. But due to recursion handling
it is easier to start like this.
*)
module TM = Map.Make (Type.Ord)
type mode =
| Candid
| Persistence
let to_idl_prim mode = let open Type in function
| Prim Null | Tup [] -> Some 1l
| Prim Bool -> Some 2l
| Prim Nat -> Some 3l
| Prim Int -> Some 4l
| Prim Nat8 -> Some 5l
| Prim Nat16 -> Some 6l
| Prim (Nat32|Char) -> Some 7l
| Prim Nat64 -> Some 8l
| Prim Int8 -> Some 9l
| Prim Int16 -> Some 10l
| Prim Int32 -> Some 11l
| Prim Int64 -> Some 12l
| Prim Float -> Some 14l
| Prim Text -> Some 15l
(* NB: Prim Blob does not map to a primitive IDL type *)
| Any -> Some 16l
| Non -> Some 17l
| Prim Principal -> Some 24l
| Prim Region -> Some 128l
(* only used for memory compatibility checks *)
| Prim Blob ->
(match mode with
| Candid -> None
| Persistence -> Some 129l)
| _ -> None
(* some constants, also see rts/idl.c *)
let idl_opt = -18l
let idl_vec = -19l
let idl_record = -20l
let idl_variant = -21l
let idl_func = -22l
let idl_service = -23l
let idl_alias = 1l (* see Note [mutable stable values] *)
(* only used for memory compatibility checks *)
let idl_tuple = -130l
(* TODO: use record *)
let type_desc env mode ts :
string * int list * int32 list (* type_desc, (relative offsets), indices of ts *)
=
let open Type in
(* Type traversal *)
(* We do a first traversal to find out the indices of non-primitive types *)
let (typs, idx) =
let typs = ref [] in
let idx = ref TM.empty in
let rec go t =
let t = Type.normalize t in
if to_idl_prim mode t <> None then () else
if TM.mem t !idx then () else begin
idx := TM.add t (Lib.List32.length !typs) !idx;
typs := !typs @ [ t ];
match t with
| Tup ts -> List.iter go ts
| Obj (_, fs) ->
List.iter (fun f -> go f.typ) fs
| Array (Mut t) -> go (Array t)
| Array t -> go t
| Opt t -> go t
| Variant vs -> List.iter (fun f -> go f.typ) vs
| Func (s, c, tbs, ts1, ts2) ->
List.iter go ts1; List.iter go ts2
| Prim Blob -> ()
| Mut t -> go t
| _ ->
Printf.eprintf "type_desc: unexpected type %s\n" (string_of_typ t);
assert false
end
in
List.iter go ts;
(!typs, !idx)
in
(* buffer utilities *)
let buf = Buffer.create 16 in
let add_u8 i =
Buffer.add_char buf (Char.chr (i land 0xff)) in
let rec add_leb128_32 (i : Lib.Uint32.t) =
let open Lib.Uint32 in
let b = logand i (of_int32 0x7fl) in
if of_int32 0l <= i && i < of_int32 128l
then add_u8 (to_int b)
else begin
add_u8 (to_int (logor b (of_int32 0x80l)));
add_leb128_32 (shift_right_logical i 7)
end in
let add_leb128 i =
assert (i >= 0);
add_leb128_32 (Lib.Uint32.of_int i) in
let rec add_sleb128 (i : int32) =
let open Int32 in
let b = logand i 0x7fl in
if -64l <= i && i < 64l
then add_u8 (to_int b)
else begin
add_u8 (to_int (logor b 0x80l));
add_sleb128 (shift_right i 7)
end in
(* Actual binary data *)
let add_idx t =
let t = Type.normalize t in
match to_idl_prim mode t with
| Some i -> add_sleb128 (Int32.neg i)
| None -> add_sleb128 (TM.find (normalize t) idx) in
let idx t =
let t = Type.normalize t in
match to_idl_prim mode t with
| Some i -> Int32.neg i
| None -> TM.find (normalize t) idx in
let rec add_typ t =
match t with
| Non -> assert false
| Prim Blob ->
assert (mode = Candid);
add_typ Type.(Array (Prim Nat8))
| Prim Region ->
add_sleb128 idl_alias; add_idx t
| Prim _ -> assert false
| Tup ts ->
add_sleb128 (match mode with
| Candid -> idl_record
| Persistence -> idl_tuple);
add_leb128 (List.length ts);
List.iteri (fun i t ->
add_leb128 i;
add_idx t;
) ts
| Obj ((Object | Memory), fs) ->
add_sleb128 idl_record;
add_leb128 (List.length fs);
List.iter (fun (h, f) ->
add_leb128_32 h;
add_idx f.typ
) (sort_by_hash fs)
| Array (Mut t) ->
add_sleb128 idl_alias; add_idx (Array t)
| Array t ->
add_sleb128 idl_vec; add_idx t
| Opt t ->
add_sleb128 idl_opt; add_idx t
| Variant vs ->
add_sleb128 idl_variant;
add_leb128 (List.length vs);
List.iter (fun (h, f) ->
add_leb128_32 h;
add_idx f.typ
) (sort_by_hash vs)
| Func (s, c, tbs, ts1, ts2) ->
assert (Type.is_shared_sort s);
add_sleb128 idl_func;
add_leb128 (List.length ts1);
List.iter add_idx ts1;
add_leb128 (List.length ts2);
List.iter add_idx ts2;
begin match s, c with
| _, Returns ->
add_leb128 1; add_u8 2; (* oneway *)
| Shared Write, _ ->
add_leb128 0; (* no annotation *)
| Shared Query, _ ->
add_leb128 1; add_u8 1; (* query *)
| Shared Composite, _ ->
add_leb128 1; add_u8 3; (* composite *)
| _ -> assert false
end
| Obj (Actor, fs) ->
add_sleb128 idl_service;
add_leb128 (List.length fs);
List.iter (fun f ->
add_leb128 (String.length f.lab);
Buffer.add_string buf f.lab;
add_idx f.typ
) fs
| Mut t ->
add_sleb128 idl_alias; add_idx t
| _ -> assert false in
Buffer.add_string buf "DIDL";
add_leb128 (List.length typs);
let offsets = List.map (fun typ ->
let offset = Buffer.length buf in
add_typ typ;
offset)
typs
in
add_leb128 (List.length ts);
List.iter add_idx ts;
(Buffer.contents buf,
offsets,
List.map idx ts)
(* See Note [Candid subtype checks] *)
let reserve_global_type_descriptor (env : E.t) =
let candid_data_segment = E.add_data_segment env "" in
let type_offsets_segment = E.add_data_segment env "" in
let idl_types_segment = E.add_data_segment env "" in
E.(env.global_type_descriptor := Some {
candid_data_segment;
type_offsets_segment;
idl_types_segment;
})
let create_global_type_descriptor (env : E.t) (set_candid_data_length, set_type_offsets_length, set_idl_types_length) =
let descriptor = get_global_type_descriptor env in
let candid_data, type_offsets, idl_types = type_desc env Candid (E.get_typtbl_typs env) in
let candid_data_binary = [StaticBytes.Bytes candid_data] in
let candid_data_length = E.replace_data_segment env E.(descriptor.candid_data_segment) candid_data_binary in
set_candid_data_length candid_data_length;
let type_offsets_binary = [StaticBytes.i64s (List.map Int64.of_int type_offsets)] in
let type_offsets_length = E.replace_data_segment env E.(descriptor.type_offsets_segment) type_offsets_binary in
set_type_offsets_length type_offsets_length;
let idl_types_64 = List.map Wasm.I64_convert.extend_i32_u idl_types in
let idl_types_binary = [StaticBytes.i64s idl_types_64] in
let idl_types_length = E.replace_data_segment env E.(descriptor.idl_types_segment) idl_types_binary in
set_idl_types_length idl_types_length
(* Returns data (in bytes) and reference buffer size (in entries) needed *)
let rec buffer_size env t =
let open Type in
let t = Type.normalize t in
let name = "@buffer_size<" ^ typ_hash t ^ ">" in
Func.share_code1 Func.Always env name ("x", I64Type) [I64Type; I64Type]
(fun env get_x ->
(* Some combinators for writing values *)
let (set_data_size, get_data_size) = new_local env "data_size" in
let (set_ref_size, get_ref_size) = new_local env "ref_size" in
compile_unboxed_const 0L ^^ set_data_size ^^
compile_unboxed_const 0L ^^ set_ref_size ^^
let inc_data_size code =
get_data_size ^^
code ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Add)) ^^
set_data_size
in
let size_word env code =
let (set_word, get_word) = new_local env "word" in
code ^^ set_word ^^
inc_data_size (I32Leb.compile_leb128_size get_word)
in
let size env t =
let (set_inc, get_inc) = new_local env "inc" in
buffer_size env t ^^
get_ref_size ^^ G.i (Binary (Wasm_exts.Values.I64 I64Op.Add)) ^^ set_ref_size ^^
set_inc ^^ inc_data_size get_inc
in
(* the incremental GC leaves array slice information in tag,
the slice information can be removed and the tag reset to array
as the GC can resume marking from the array beginning *)
let clear_array_slicing =
let (set_temp, get_temp) = new_local env "temp" in
set_temp ^^
get_temp ^^ compile_unboxed_const Tagged.(int_of_tag StableSeen) ^^
compile_comparison I64Op.Ne ^^
get_temp ^^ compile_unboxed_const Tagged.(int_of_tag CoercionFailure) ^^
compile_comparison I64Op.Ne ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.And)) ^^
get_temp ^^ compile_unboxed_const Tagged.(int_of_tag ArraySliceMinimum) ^^
compile_comparison I64Op.GeU ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.And)) ^^
E.if1 I64Type begin
(compile_unboxed_const Tagged.(int_of_tag (Array M)))
end begin
get_temp
end
in
let size_alias size_thing =
(* see Note [mutable stable values] *)
let (set_tag, get_tag) = new_local env "tag" in
get_x ^^ Tagged.load_tag env ^^ clear_array_slicing ^^ set_tag ^^
(* Sanity check *)
get_tag ^^ compile_eq_const Tagged.(int_of_tag StableSeen) ^^
get_tag ^^ compile_eq_const Tagged.(int_of_tag MutBox) ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Or)) ^^
get_tag ^^ compile_eq_const Tagged.(int_of_tag (Array M)) ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Or)) ^^
get_tag ^^ compile_eq_const Tagged.(int_of_tag Region) ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Or)) ^^
E.else_trap_with env "object_size/Mut: Unexpected tag." ^^
(* Check if we have seen this before *)
get_tag ^^ compile_eq_const Tagged.(int_of_tag StableSeen) ^^
E.if0 begin
(* Seen before *)
(* One byte marker, one word offset *)
(* TODO: Support 64-bit pointer in serialization *)
inc_data_size (compile_unboxed_const 5L)
end begin
(* Not yet seen *)
(* One byte marker, two words scratch space *)
inc_data_size (compile_unboxed_const 9L) ^^
(* Mark it as seen *)
get_x ^^ Tagged.(store_tag env StableSeen) ^^
(* and descend *)
size_thing ()
end
in
(* Now the actual type-dependent code *)
begin match t with
| Prim Nat -> inc_data_size (get_x ^^ BigNum.compile_data_size_unsigned env)
| Prim Int -> inc_data_size (get_x ^^ BigNum.compile_data_size_signed env)
| Prim (Int8|Nat8) -> inc_data_size (compile_unboxed_const 1L)
| Prim (Int16|Nat16) -> inc_data_size (compile_unboxed_const 2L)
| Prim (Int32|Nat32|Char) -> inc_data_size (compile_unboxed_const 4L)
| Prim (Int64|Nat64|Float) -> inc_data_size (compile_unboxed_const 8L)
| Prim Bool -> inc_data_size (compile_unboxed_const 1L)
| Prim Null -> G.nop
| Any -> G.nop
| Tup [] -> G.nop (* e(()) = null *)
| Tup ts ->
G.concat_mapi (fun i t ->
get_x ^^ Tuple.load_n env (Int64.of_int i) ^^
size env t
) ts
| Obj ((Object | Memory), fs) ->
G.concat_map (fun (_h, f) ->
get_x ^^ Object.load_idx_raw env f.Type.lab ^^
size env f.typ
) (sort_by_hash fs)
| Array (Mut t) ->
size_alias (fun () -> get_x ^^ size env (Array t))
| Array t ->
size_word env (get_x ^^ Arr.len env) ^^
get_x ^^ Arr.len env ^^
from_0_to_n env (fun get_i ->
get_x ^^ get_i ^^ Arr.unsafe_idx env ^^ load_ptr ^^
size env t
)
| Prim Blob ->
let (set_len, get_len) = new_local env "len" in
get_x ^^ Blob.len env ^^ set_len ^^
size_word env get_len ^^
inc_data_size get_len
| Prim Text ->
let (set_len, get_len) = new_local env "len" in
get_x ^^ Text.size env ^^ set_len ^^
size_word env get_len ^^
inc_data_size get_len
| Opt t ->
inc_data_size (compile_unboxed_const 1L) ^^ (* one byte tag *)
get_x ^^ Opt.is_some env ^^
E.if0 (get_x ^^ Opt.project env ^^ size env t) G.nop
| Variant vs ->
List.fold_right (fun (i, {lab = l; typ = t; _}) continue ->
get_x ^^
Variant.test_is env l ^^
E.if0
( size_word env (compile_unboxed_const (Int64.of_int i)) ^^
get_x ^^ Variant.project env ^^ size env t
) continue
)
( List.mapi (fun i (_h, f) -> (i,f)) (sort_by_hash vs) )
( E.trap_with env "buffer_size: unexpected variant" )
| Func _ ->
inc_data_size (compile_unboxed_const 1L) ^^ (* one byte tag *)
get_x ^^ Arr.load_field env 0L ^^ size env (Obj (Actor, [])) ^^
get_x ^^ Arr.load_field env 1L ^^ size env (Prim Text)
| Obj (Actor, _) | Prim Principal ->
inc_data_size (compile_unboxed_const 1L) ^^ (* one byte tag *)
get_x ^^ size env (Prim Blob)
| Non ->
E.trap_with env "buffer_size called on value of type None"
| Prim Region ->
size_alias (fun () ->
inc_data_size (compile_unboxed_const 12L) ^^ (* |id| + |page_count| = 8 + 4 *)
get_x ^^ Region.vec_pages env ^^ size env (Prim Blob))
| Mut t ->
size_alias (fun () -> get_x ^^ MutBox.load_field env ^^ size env t)
| _ -> todo "buffer_size" (Arrange_ir.typ t) G.nop
end ^^
(* Check 32-bit overflow of buffer_size *)
(* TODO: Support 64-bit buffer *)
get_data_size ^^
compile_shrU_const 32L ^^
compile_test I64Op.Eqz ^^
E.else_trap_with env "buffer_size overflow" ^^
get_data_size ^^
get_ref_size
)
(* TODO: Change serialization version because format changes with 64-bit *)
(* Copies x to the data_buffer, storing references after ref_count entries in ref_base *)
let rec serialize_go env t =
let open Type in
let t = Type.normalize t in
let name = Strm.name_for "serialize_go" [t] in
Func.share_code3 Func.Always env name (("x", I64Type), ("data_buffer", I64Type), ("ref_buffer", I64Type)) [I64Type; I64Type]
(fun env get_x get_data_buf get_ref_buf ->
let set_ref_buf = G.setter_for get_ref_buf in
(* Some combinators for writing values *)
let open Strm in
let write env t =
get_data_buf ^^
get_ref_buf ^^
serialize_go env t ^^
set_ref_buf ^^
checkpoint env get_data_buf
in
let write_alias write_thing =
(* see Note [mutable stable values] *)
(* Check heap tag *)
let (set_tag, get_tag) = new_local env "tag" in
get_x ^^ Tagged.load_tag env ^^ set_tag ^^
get_tag ^^ compile_eq_const Tagged.(int_of_tag StableSeen) ^^
E.if0
begin
(* This is the real data *)
write_byte env get_data_buf (compile_unboxed_const 0L) ^^
(* Remember the current offset in the tag word *)
get_x ^^ Tagged.load_forwarding_pointer env ^^ Strm.absolute_offset env get_data_buf ^^
Tagged.store_field env Tagged.tag_field ^^
(* Leave space in the output buffer for the decoder's bookkeeping *)
(* For compatibility, this is still in 32-bit format, but not useful in 64-bit *)
write_word_32 env get_data_buf (compile_unboxed_const 0L) ^^
write_word_32 env get_data_buf (compile_unboxed_const 0L) ^^
(* Now the data, following the object field mutbox indirection *)
write_thing ()
end
begin
(* This is a reference *)
write_byte env get_data_buf (compile_unboxed_const 1L) ^^
(* Sanity Checks *)
get_tag ^^ compile_eq_const Tagged.(int_of_tag MutBox) ^^
E.then_trap_with env "unvisited mutable data in serialize_go (MutBox)" ^^
get_tag ^^ compile_eq_const Tagged.(int_of_tag (Array M)) ^^
E.then_trap_with env "unvisited mutable data in serialize_go (Array)" ^^
get_tag ^^ compile_eq_const Tagged.(int_of_tag Region) ^^
E.then_trap_with env "unvisited mutable data in serialize_go (Region)" ^^
(* Second time we see this *)
(* Calculate relative offset *)
let set_offset, get_offset = new_local env "offset" in
get_tag ^^ Strm.absolute_offset env get_data_buf ^^ G.i (Binary (Wasm_exts.Values.I64 I64Op.Sub)) ^^
set_offset ^^
(* A sanity check *)
get_offset ^^ compile_unboxed_const 0L ^^
compile_comparison I64Op.LtS ^^
E.else_trap_with env "Odd offset" ^^
(* TODO: Support serialization beyond 32-bit *)
get_offset ^^ compile_unboxed_const 0xffff_ffff_0000_0000L ^^
compile_comparison I64Op.GeS ^^
E.else_trap_with env "64-bit offsets not yet supported during serialization" ^^
(* Write the offset to the output buffer *)
write_word_32 env get_data_buf get_offset
end
in
(* Now the actual serialization *)
begin match t with
| Prim Nat ->
write_bignum_leb env get_data_buf get_x
| Prim Int ->
write_bignum_sleb env get_data_buf get_x
| Prim Float ->
reserve env get_data_buf 8L ^^
get_x ^^ Float.unbox env ^^
G.i (Store {ty = F64Type; align = 0; offset = 0L; sz = None})
| Prim ((Int64|Nat64) as pty) ->
reserve env get_data_buf 8L ^^
get_x ^^ BoxedWord64.unbox env pty ^^
G.i (Store {ty = I64Type; align = 0; offset = 0L; sz = None})
| Prim ((Int32|Nat32) as ty) ->
write_word_32 env get_data_buf (get_x ^^ TaggedSmallWord.lsb_adjust ty)
| Prim Char ->
write_word_32 env get_data_buf (get_x ^^ TaggedSmallWord.lsb_adjust_codepoint env)
| Prim ((Int16|Nat16) as ty) ->
reserve env get_data_buf 2L ^^
get_x ^^ TaggedSmallWord.lsb_adjust ty ^^ G.i (Convert (Wasm_exts.Values.I32 I32Op.WrapI64)) ^^
G.i (Store {ty = I32Type; align = 0; offset = 0L; sz = Some Wasm_exts.Types.Pack16})
| Prim ((Int8|Nat8) as ty) ->
write_byte env get_data_buf (get_x ^^ TaggedSmallWord.lsb_adjust ty)
| Prim Bool ->
write_byte env get_data_buf get_x
| Tup [] -> (* e(()) = null *)
G.nop
| Tup ts ->
G.concat_mapi (fun i t ->
get_x ^^ Tuple.load_n env (Int64.of_int i) ^^
write env t
) ts
| Obj ((Object | Memory), fs) ->
G.concat_map (fun (_h, f) ->
get_x ^^ Object.load_idx_raw env f.Type.lab ^^
write env f.typ
) (sort_by_hash fs)
| Array (Mut t) ->
write_alias (fun () -> get_x ^^ write env (Array t))
| Prim Region ->
write_alias (fun () ->
reserve env get_data_buf 8L ^^
get_x ^^ Region.id env ^^
G.i (Store {ty = I64Type; align = 0; offset = 0L; sz = None}) ^^
write_word_32 env get_data_buf (get_x ^^ Region.page_count env) ^^
write_blob env get_data_buf (get_x ^^ Region.vec_pages env)
)
| Array t ->
write_word_leb env get_data_buf (get_x ^^ Arr.len env) ^^
get_x ^^ Arr.len env ^^
from_0_to_n env (fun get_i ->
get_x ^^ get_i ^^ Arr.unsafe_idx env ^^ load_ptr ^^
write env t
)
| Prim Null -> G.nop
| Any -> G.nop
| Opt t ->
get_x ^^
Opt.is_some env ^^
E.if0
(write_byte env get_data_buf (compile_unboxed_const 1L) ^^ get_x ^^ Opt.project env ^^ write env t)
(write_byte env get_data_buf (compile_unboxed_const 0L))
| Variant vs ->
List.fold_right (fun (i, {lab = l; typ = t; _}) continue ->
get_x ^^
Variant.test_is env l ^^
E.if0
( write_word_leb env get_data_buf (compile_unboxed_const (Int64.of_int i)) ^^
get_x ^^ Variant.project env ^^ write env t)
continue
)
( List.mapi (fun i (_h, f) -> (i,f)) (sort_by_hash vs) )
( E.trap_with env "serialize_go: unexpected variant" )
| Prim Blob ->
write_blob env get_data_buf get_x
| Prim Text ->
write_text env get_data_buf get_x
| Func _ ->
write_byte env get_data_buf (compile_unboxed_const 1L) ^^
get_x ^^ Arr.load_field env 0L ^^ write env (Obj (Actor, [])) ^^
get_x ^^ Arr.load_field env 1L ^^ write env (Prim Text)
| Obj (Actor, _) | Prim Principal ->
write_byte env get_data_buf (compile_unboxed_const 1L) ^^
get_x ^^ write env (Prim Blob)
| Non ->
E.trap_with env "serializing value of type None"
| Mut t ->
write_alias (fun () ->
get_x ^^ MutBox.load_field env ^^ write env t
)
| _ -> todo "serialize" (Arrange_ir.typ t) G.nop
end ^^
get_data_buf ^^
get_ref_buf
)
(* This value is returned by deserialize_go if deserialization fails in a way
that should be recoverable by opt parsing.
It is an (invalid) sentinel pointer value (in skewed format) and can be used for pointer comparison.
It will be never placed on the heap and must not be dereferenced.
If unskewed, it refers to the unallocated last Wasm memory page.
*)
let coercion_error_value env = 0xffff_ffff_ffff_fffdL
(* See Note [Candid subtype checks] *)
let with_rel_buf_opt env extended get_typtbl_size1 get_typtbl_size2 f =
if extended then
f (compile_unboxed_const 0L)
else
get_typtbl_size1 ^^ get_typtbl_size2 ^^
E.call_import env "rts" "idl_sub_buf_words" ^^
Stack.dynamic_with_words env "rel_buf" (fun get_ptr ->
get_ptr ^^ get_typtbl_size1 ^^ get_typtbl_size2 ^^
E.call_import env "rts" "idl_sub_buf_init" ^^
f get_ptr)
(* See Note [Candid subtype checks] *)
let idl_sub env t2 =
let idx = Wasm.I64_convert.extend_i32_u (E.add_typtbl_typ env t2) in
get_global_idl_types env ^^
Blob.payload_ptr_unskewed env ^^
G.i (Load {ty = I64Type; align = 0; offset = Int64.mul idx candid_type_offset_size (*!*); sz = None}) ^^
Func.share_code2 Func.Always env ("idl_sub")
(("idltyp1", I64Type),
("idltyp2", I64Type)
)
[I64Type]
(fun env get_idltyp1 get_idltyp2 ->
Registers.get_rel_buf_opt env ^^
E.else_trap_with env "null rel_buf" ^^
Registers.get_rel_buf_opt env ^^
Registers.get_typtbl env ^^
Registers.get_global_typtbl env ^^
Registers.get_typtbl_end env ^^
Registers.get_global_typtbl_end env ^^
Registers.get_typtbl_size env ^^
Registers.get_global_typtbl_size env ^^
get_idltyp1 ^^
G.i (Convert (Wasm_exts.Values.I32 I32Op.WrapI64)) ^^
get_idltyp2 ^^
G.i (Convert (Wasm_exts.Values.I32 I32Op.WrapI64)) ^^
E.call_import env "rts" "idl_sub" ^^
G.i (Convert (Wasm_exts.Values.I64 I64Op.ExtendUI32))
)
(* The main deserialization function, generated once per type hash.
We use a combination of RTS stack locals and registers (Wasm globals) for
recursive parameter passing to avoid exhausting the Wasm stack, which is instead
used solely for return values and (implicit) return addresses.
Its RTS stack parameters are (c.f. module Stack):
* idltyp: The idl type (prim type or table index) to decode now
* depth: Recursion counter; reset when we make progres on the value
* can_recover: Whether coercion errors are recoverable, see coercion_failed below
Its register parameters are (c.f. Registers):
* rel_buf_opt: The optional subtype check memoization table
(non-null for untrusted Candid but null for trusted de-stablization (see `with_rel_buf_opt`).)
* data_buffer: The current position of the input data buffer
* ref_buffer: The current position of the input references buffer
* typtbl: The type table, as returned by parse_idl_header
* typtbl_size: The size of the type table, used to limit recursion
It returns the value of type t (vanilla representation) or coercion_error_value,
It advances the data_buffer past the decoded value (even if it returns coercion_error_value!)
*)
(* symbolic names for arguments passed on RTS stack *)
module StackArgs = struct
let idltyp = 0L
let depth = 1L
let can_recover = 2L
end
let rec deserialize_go env t =
let open Type in
let t = Type.normalize t in
let name = "@deserialize_go<" ^ typ_hash t ^ ">" in
Func.share_code0 Func.Always env name
[I64Type]
(fun env ->
let get_idltyp = Stack.get_local env StackArgs.idltyp in
let get_depth = Stack.get_local env StackArgs.depth in
let get_can_recover = Stack.get_local env StackArgs.can_recover in
let get_rel_buf_opt = Registers.get_rel_buf_opt env in
let get_data_buf = Registers.get_data_buf env in
let _get_ref_buf = Registers.get_ref_buf env in
let get_typtbl = Registers.get_typtbl env in
let _get_typtbl_end = Registers.get_typtbl_end env in
let get_typtbl_size = Registers.get_typtbl_size env in
(* Decrement and check idl quota *)
Bool.lit_rts_int32 true ^^
compile_unboxed_const 1L ^^
Registers.idl_limit_check env ^^
(* Check recursion depth (protects against empty record etc.) *)
(* Factor 2 because at each step, the expected type could go through one
level of opt that is not present in the value type
*)
get_depth ^^
get_typtbl_size ^^ compile_add_const 1L ^^ compile_mul_const 2L ^^
compile_comparison I64Op.LeU ^^
E.else_trap_with env ("IDL error: circular record read") ^^
(* Remember data buffer position, to detect progress *)
let (set_old_pos, get_old_pos) = new_local env "old_pos" in
ReadBuf.get_ptr get_data_buf ^^ set_old_pos ^^
let go' can_recover env t =
(* assumes idltyp on stack *)
Stack.with_frame env "frame_ptr" 3L (fun () ->
Stack.set_local env StackArgs.idltyp ^^
(* set up frame arguments *)
( (* Reset depth counter if we made progress *)
ReadBuf.get_ptr get_data_buf ^^ get_old_pos ^^
compile_comparison I64Op.Eq ^^
E.if1 I64Type
(Stack.get_prev_local env 1L ^^ compile_add_const 1L)
(compile_unboxed_const 0L)
) ^^
Stack.set_local env StackArgs.depth ^^
(if can_recover
then compile_unboxed_const 1L
else Stack.get_prev_local env 2L) ^^
Stack.set_local env StackArgs.can_recover ^^
deserialize_go env t)
in
let go = go' false in
let go_can_recover = go' true in
let skip get_typ =
get_data_buf ^^ get_typtbl ^^ get_typ ^^ G.i (Convert (Wasm_exts.Values.I32 I32Op.WrapI64)) ^^ compile_const_32 0l ^^
E.call_import env "rts" "skip_any"
in
(* This flag is set to return a coercion error at the very end
We cannot use (G.i Return) for early exit, or we’d leak stack space,
as Stack.with_words is used to allocate scratch space.
*)
let (set_failed, get_failed) = new_local env "failed" in
let set_failure = compile_unboxed_const 1L ^^ set_failed in
let when_failed f = get_failed ^^ E.if0 f G.nop in
(* This looks at a value and if it is coercion_error_value, sets the failure flag.
This propagates the error out of arrays, records, etc.
*)
let remember_failure get_val =
get_val ^^ compile_eq_const (coercion_error_value env) ^^
E.if0 set_failure G.nop
in
(* This sets the failure flag and puts coercion_error_value on the stack *)
let coercion_failed msg =
(* If we know that there is no backtracking `opt t` around, then just trap.
This gives a better error message
*)
get_can_recover ^^ E.else_trap_with env msg ^^
set_failure ^^ compile_unboxed_const (coercion_error_value env) in
(* returns true if we are looking at primitive type with this id *)
let check_prim_typ t =
get_idltyp ^^
compile_eq_const (Wasm.I64_convert.extend_i32_s (Int32.neg (Option.get (to_idl_prim Candid t))))
in
let with_prim_typ t f =
check_prim_typ t ^^
E.if1 I64Type f
( skip get_idltyp ^^
coercion_failed ("IDL error: unexpected IDL type when parsing " ^ string_of_typ t)
)
in
let read_byte_tagged = function
| [code0; code1] ->
ReadBuf.read_byte env get_data_buf ^^
let (set_b, get_b) = new_local env "b" in
set_b ^^
get_b ^^
compile_eq_const 0L ^^
E.if1 I64Type
begin code0
end begin
get_b ^^ compile_eq_const 1L ^^
E.else_trap_with env "IDL error: byte tag not 0 or 1" ^^
code1
end
| _ -> assert false; (* can be generalized later as needed *)
in
let read_blob () =
let (set_len, get_len) = new_local env "len" in
let (set_x, get_x) = new_local env "x" in
ReadBuf.read_leb128 env get_data_buf ^^ set_len ^^
Blob.alloc env Tagged.B get_len ^^ set_x ^^
get_x ^^ Blob.payload_ptr_unskewed env ^^
ReadBuf.read_blob env get_data_buf get_len ^^
get_x
in
let read_principal sort () =
let (set_len, get_len) = new_local env "len" in
let (set_x, get_x) = new_local env "x" in
ReadBuf.read_leb128 env get_data_buf ^^ set_len ^^
(* at most 29 bytes, according to
https://sdk.dfinity.org/docs/interface-spec/index.html#principal
*)
get_len ^^ compile_unboxed_const 29L ^^ compile_comparison I64Op.LeU ^^
E.else_trap_with env "IDL error: principal too long" ^^
Blob.alloc env sort get_len ^^ set_x ^^
get_x ^^ Blob.payload_ptr_unskewed env ^^
ReadBuf.read_blob env get_data_buf get_len ^^
get_x
in
let read_text () =
let (set_len, get_len) = new_local env "len" in
ReadBuf.read_leb128 env get_data_buf ^^ set_len ^^
let (set_ptr, get_ptr) = new_local env "x" in
ReadBuf.get_ptr get_data_buf ^^ set_ptr ^^
ReadBuf.advance get_data_buf get_len ^^
(* validate *)
get_ptr ^^ get_len ^^ E.call_import env "rts" "utf8_validate" ^^
(* copy *)
get_ptr ^^ get_len ^^ Text.of_ptr_size env
in
let read_actor_data () =
read_byte_tagged
[ E.trap_with env "IDL error: unexpected actor reference"
; read_principal Tagged.A ()
]
in
(* returns true if get_arg_typ is a composite type of this id *)
let check_composite_typ get_arg_typ idl_tycon_id =
get_arg_typ ^^
compile_unboxed_const 0L ^^ compile_comparison I64Op.GeS ^^
E.if1 I64Type
begin
ReadBuf.alloc env (fun get_typ_buf ->
(* Update typ_buf *)
ReadBuf.set_ptr get_typ_buf (
get_typtbl ^^
get_arg_typ ^^ compile_mul_const Heap.word_size ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Add)) ^^
load_unskewed_ptr
) ^^
ReadBuf.set_end get_typ_buf (ReadBuf.get_end get_data_buf) ^^
(* read sleb128 *)
ReadBuf.read_sleb128 env get_typ_buf ^^
(* Check it is the expected value *)
compile_eq_const (Wasm.I64_convert.extend_i32_s idl_tycon_id)
)
end
(compile_unboxed_const 0L)
in
(* checks that arg_typ is positive, looks it up in the table,
creates a fresh typ_buf pointing into the type description,
reads the type constructor index and traps or fails if it is the wrong one.
and passes the typ_buf to a subcomputation to read the type arguments *)
let with_composite_arg_typ get_arg_typ idl_tycon_id f =
(* make sure index is not negative *)
get_arg_typ ^^
compile_unboxed_const 0L ^^ compile_comparison I64Op.GeS ^^
E.if1 I64Type
begin
ReadBuf.alloc env (fun get_typ_buf ->
(* Update typ_buf *)
ReadBuf.set_ptr get_typ_buf (
get_typtbl ^^
get_arg_typ ^^ compile_mul_const Heap.word_size ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Add)) ^^
load_unskewed_ptr
) ^^
ReadBuf.set_end get_typ_buf (ReadBuf.get_end get_data_buf) ^^
(* read sleb128 *)
ReadBuf.read_sleb128 env get_typ_buf ^^
(* Check it is the expected type constructor *)
compile_eq_const (Wasm.I64_convert.extend_i32_s idl_tycon_id) ^^
E.if1 I64Type
begin
f get_typ_buf
end
begin
skip get_arg_typ ^^
coercion_failed ("IDL error: unexpected IDL type when parsing " ^ string_of_typ t)
end
)
end
begin
skip get_arg_typ ^^
coercion_failed ("IDL error: unexpected IDL type when parsing " ^ string_of_typ t)
end
in
let with_alias_typ get_arg_typ =
get_arg_typ ^^
compile_unboxed_const 0L ^^ compile_comparison I64Op.GeS ^^
E.if1 I64Type
begin
with_composite_arg_typ get_arg_typ idl_alias (ReadBuf.read_sleb128 env)
end
begin
(* sanity check *)
get_arg_typ ^^
compile_eq_const (Wasm.I64_convert.extend_i32_s (Int32.neg (Option.get (to_idl_prim Candid (Prim Region))))) ^^
E.else_trap_with env "IDL error: unexpecting primitive alias type" ^^
get_arg_typ
end
in
let with_composite_typ idl_tycon_id f =
with_composite_arg_typ get_idltyp idl_tycon_id f
in
let with_record_typ f = with_composite_typ idl_record (fun get_typ_buf ->
Stack.with_words env "get_n_ptr" 1L (fun get_n_ptr ->
get_n_ptr ^^
ReadBuf.read_leb128 env get_typ_buf ^^
store_unskewed_ptr ^^
f get_typ_buf get_n_ptr
)
) in
let with_blob_typ env f =
with_composite_typ idl_vec (fun get_typ_buf ->
ReadBuf.read_sleb128 env get_typ_buf ^^
compile_eq_const (-5L) (* Nat8 *) ^^
E.if1 I64Type
f
begin
skip get_idltyp ^^
coercion_failed "IDL error: blob not a vector of nat8"
end
)
in
let store_word32 =
G.i (Convert (Wasm_exts.Values.I32 I32Op.WrapI64)) ^^
G.i (Store {ty = I32Type; align = 0; offset = 0L; sz = None}) in
(* See comment on 64-bit destabilization on Note [mutable stable values] *)
let pointer_compression_shift = 3L in (* log2(word_size), 3 unused lower bits with 64-bit alignment *)
let write_compressed_pointer env =
let (set_pointer, get_pointer) = new_local env "pointer" in
compile_add_const ptr_unskew ^^
compile_shrU_const pointer_compression_shift ^^
compile_add_const ptr_skew ^^
set_pointer ^^ get_pointer ^^
compile_unboxed_const 0xffff_ffffL ^^
compile_comparison I64Op.LeU ^^
E.else_trap_with env "Pointer cannot be compressed to 32 bit" ^^
get_pointer ^^
store_word32
in
let read_compressed_pointer env get_buf =
let (set_pointer, get_pointer) = new_local env "pointer" in
ReadBuf.read_word32 env get_buf ^^
set_pointer ^^ get_pointer ^^
compile_eq_const 0L ^^
E.if1 I64Type
begin
get_pointer
end
begin
get_pointer ^^
compile_add_const ptr_unskew ^^
compile_shl_const pointer_compression_shift ^^
compile_add_const ptr_skew
end
in
let read_alias env t read_thing =
(* see Note [mutable stable values] *)
let (set_is_ref, get_is_ref) = new_local env "is_ref" in
let (set_result, get_result) = new_local env "result" in
let (set_cur, get_cur) = new_local env "cur" in
let (set_memo, get_memo) = new_local env "memo" in
let (set_arg_typ, get_arg_typ) = new_local env "arg_typ" in
with_alias_typ get_idltyp ^^ set_arg_typ ^^
(* Find out if it is a reference or not *)
ReadBuf.read_byte env get_data_buf ^^ set_is_ref ^^
(* If it is a reference, temporarily set the read buffer to that place *)
get_is_ref ^^
E.if0 begin
let (set_offset, get_offset) = new_local env "offset" in
ReadBuf.read_signed_word32 env get_data_buf ^^
set_offset ^^
(* A sanity check *)
get_offset ^^ compile_unboxed_const 0L ^^
compile_comparison I64Op.LtS ^^
E.else_trap_with env "Odd offset" ^^
ReadBuf.get_ptr get_data_buf ^^ set_cur ^^
ReadBuf.advance get_data_buf (get_offset ^^ compile_add_const (-4L))
end G.nop ^^
(* Remember location of ptr *)
ReadBuf.get_ptr get_data_buf ^^ set_memo ^^
(* Did we decode this already? *)
read_compressed_pointer env get_data_buf ^^
set_result ^^
get_result ^^ compile_eq_const 0L ^^
E.if0 begin
(* No, not yet decoded *)
(* Skip over type hash field *)
ReadBuf.read_word32 env get_data_buf ^^ compile_eq_const 0L ^^
E.else_trap_with env "Odd: Type hash scratch space not empty" ^^
(* Read the content *)
read_thing get_arg_typ (fun get_thing ->
(* This is called after allocation, but before descending
We update the memo location here so that loops work
*)
get_thing ^^ set_result ^^
get_memo ^^ get_result ^^ write_compressed_pointer env ^^
get_memo ^^ compile_add_const 4L ^^ Blob.lit env Tagged.B (typ_hash t) ^^ write_compressed_pointer env
)
end begin
(* Decoded before. Check type hash *)
read_compressed_pointer env get_data_buf ^^ Blob.lit env Tagged.B (typ_hash t) ^^
Blob.compare env (Some Operator.EqOp) ^^
E.else_trap_with env ("Stable memory error: Aliased at wrong type, expected: " ^ typ_hash t)
end ^^
(* If this was a reference, reset read buffer *)
get_is_ref ^^
E.if0 (ReadBuf.set_ptr get_data_buf get_cur) G.nop ^^
get_result
in
(* Now the actual deserialization *)
begin match t with
(* Primitive types *)
| Prim Nat ->
with_prim_typ t
begin
BigNum.compile_load_from_data_buf env get_data_buf false
end
| Prim Int ->
(* Subtyping with nat *)
check_prim_typ (Prim Nat) ^^
E.if1 I64Type
begin
BigNum.compile_load_from_data_buf env get_data_buf false
end
begin
with_prim_typ t
begin
BigNum.compile_load_from_data_buf env get_data_buf true
end
end
| Prim Float ->
with_prim_typ t
begin
ReadBuf.read_float64 env get_data_buf ^^
Float.box env
end
| Prim ((Int64|Nat64) as pty) ->
with_prim_typ t
begin
ReadBuf.read_word64 env get_data_buf ^^
BoxedWord64.box env pty
end
| Prim ((Int32|Nat32) as ty) ->
with_prim_typ t
begin
ReadBuf.read_word32 env get_data_buf ^^
TaggedSmallWord.msb_adjust ty ^^
TaggedSmallWord.tag env ty
end
| Prim Char ->
with_prim_typ t
begin
ReadBuf.read_word32 env get_data_buf ^^
TaggedSmallWord.check_and_msb_adjust_codepoint env ^^
TaggedSmallWord.tag env Char
end
| Prim ((Int16|Nat16) as ty) ->
with_prim_typ t
begin
ReadBuf.read_word16 env get_data_buf ^^
TaggedSmallWord.msb_adjust ty ^^
TaggedSmallWord.tag env ty
end
| Prim ((Int8|Nat8) as ty) ->
with_prim_typ t
begin
ReadBuf.read_byte env get_data_buf ^^
TaggedSmallWord.msb_adjust ty ^^
TaggedSmallWord.tag env ty
end
| Prim Bool ->
with_prim_typ t
begin
read_byte_tagged
[ Bool.lit false
; Bool.lit true
]
end
| Prim Null ->
with_prim_typ t (Opt.null_lit env)
| Any ->
skip get_idltyp ^^
(* Any vanilla value works here *)
Opt.null_lit env
| Prim Blob ->
with_blob_typ env (read_blob ())
| Prim Principal ->
with_prim_typ t
begin
read_byte_tagged
[ E.trap_with env "IDL error: unexpected principal reference"
; read_principal Tagged.P ()
]
end
| Prim Text ->
with_prim_typ t (read_text ())
| Tup [] -> (* e(()) = null *)
with_prim_typ t (Tuple.from_stack env 0)
(* Composite types *)
| Tup ts ->
with_record_typ (fun get_typ_buf get_n_ptr ->
let (set_val, get_val) = new_local env "val" in
G.concat_mapi (fun i t ->
(* skip all possible intermediate extra fields *)
get_typ_buf ^^ get_data_buf ^^ get_typtbl ^^ compile_const_32 (Int32.of_int i) ^^ get_n_ptr ^^
E.call_import env "rts" "find_field" ^^
Bool.from_rts_int32 ^^
E.if1 I64Type
begin
ReadBuf.read_sleb128 env get_typ_buf ^^
go env t ^^ set_val ^^
remember_failure get_val ^^
get_val
end
begin
match normalize t with
| Prim Null | Opt _ | Any -> Opt.null_lit env
| _ -> coercion_failed "IDL error: did not find tuple field in record"
end
) ts ^^
(* skip all possible trailing extra fields *)
get_typ_buf ^^ get_data_buf ^^ get_typtbl ^^ get_n_ptr ^^
E.call_import env "rts" "skip_fields" ^^
Tuple.from_stack env (List.length ts)
)
| Obj ((Object | Memory), fs) ->
with_record_typ (fun get_typ_buf get_n_ptr ->
let (set_val, get_val) = new_local env "val" in
Object.lit_raw env (List.map (fun (h,f) ->
f.Type.lab, fun () ->
(* skip all possible intermediate extra fields *)
get_typ_buf ^^ get_data_buf ^^ get_typtbl ^^ compile_const_32 (Lib.Uint32.to_int32 h) ^^ get_n_ptr ^^
E.call_import env "rts" "find_field" ^^
Bool.from_rts_int32 ^^
E.if1 I64Type
begin
ReadBuf.read_sleb128 env get_typ_buf ^^
go env f.typ ^^ set_val ^^
remember_failure get_val ^^
get_val
end
begin
match normalize f.typ with
| Prim Null | Opt _ | Any -> Opt.null_lit env
| _ -> coercion_failed (Printf.sprintf "IDL error: did not find field %s in record" f.lab)
end
) (sort_by_hash fs)) ^^
(* skip all possible trailing extra fields *)
get_typ_buf ^^ get_data_buf ^^ get_typtbl ^^ get_n_ptr ^^
E.call_import env "rts" "skip_fields"
)
| Array (Mut t) ->
read_alias env (Array (Mut t)) (fun get_array_typ on_alloc ->
let (set_len, get_len) = new_local env "len" in
let (set_x, get_x) = new_local env "x" in
let (set_val, get_val) = new_local env "val" in
let (set_arg_typ, get_arg_typ) = new_local env "arg_typ" in
(* TODO: if possible refactor to match new Array t code,
(perhaps too risky and unnecessary for extended candid due to lack of fancy opt subtyping, see #4243)
*)
with_composite_arg_typ get_array_typ idl_vec (ReadBuf.read_sleb128 env) ^^ set_arg_typ ^^
ReadBuf.read_leb128 env get_data_buf ^^ set_len ^^
Arr.alloc env Tagged.M get_len ^^ set_x ^^
on_alloc get_x ^^
get_len ^^ from_0_to_n env (fun get_i ->
get_x ^^ get_i ^^ Arr.unsafe_idx env ^^
get_arg_typ ^^ go env t ^^ set_val ^^
remember_failure get_val ^^
get_val ^^ store_ptr
) ^^
get_x ^^
Tagged.allocation_barrier env ^^
G.i Drop
)
| Prim Region ->
read_alias env (Prim Region) (fun get_region_typ on_alloc ->
let (set_region, get_region) = new_local env "region" in
(* sanity check *)
get_region_typ ^^
compile_eq_const (Wasm.I64_convert.extend_i32_s (Int32.neg (Option.get (to_idl_prim Candid (Prim Region))))) ^^
E.else_trap_with env "deserialize_go (Region): unexpected idl_typ" ^^
(* pre-allocate a region object, with dummy fields *)
compile_unboxed_const 0L ^^ (* id *)
compile_unboxed_const 0L ^^ (* pagecount *)
Blob.lit env Tagged.B "" ^^ (* vec_pages *)
Region.alloc_region env ^^
set_region ^^
on_alloc get_region ^^
(* read and initialize the region's fields *)
get_region ^^
ReadBuf.read_word64 env get_data_buf ^^ (* id *)
ReadBuf.read_word32 env get_data_buf ^^ (* pagecount *)
read_blob () ^^ (* vec_pages *)
Region.init_region env
)
| Array t ->
let (set_len, get_len) = new_local env "len" in
let (set_x, get_x) = new_local env "x" in
let (set_val, get_val) = new_local env "val" in
let (set_arg_typ, get_arg_typ) = new_local env "arg_typ" in
with_composite_typ idl_vec (fun get_typ_buf ->
ReadBuf.read_sleb128 env get_typ_buf ^^
set_arg_typ ^^
ReadBuf.read_leb128 env get_data_buf ^^ set_len ^^
(* Don't decrement just check quota *)
Bool.lit_rts_int32 false ^^
get_len ^^
Registers.idl_limit_check env ^^
Arr.alloc env Tagged.I get_len ^^ set_x ^^
get_len ^^ from_0_to_n env (fun get_i ->
get_x ^^ get_i ^^ Arr.unsafe_idx env ^^
get_arg_typ ^^ go env t ^^ set_val ^^
remember_failure get_val ^^
get_val ^^ store_ptr
) ^^
get_x ^^
Tagged.allocation_barrier env)
| Opt t ->
check_prim_typ (Prim Null) ^^
E.if1 I64Type (Opt.null_lit env)
begin
check_prim_typ Any ^^ (* reserved *)
E.if1 I64Type (Opt.null_lit env)
begin
check_composite_typ get_idltyp idl_opt ^^
E.if1 I64Type
begin
let (set_arg_typ, get_arg_typ) = new_local env "arg_typ" in
with_composite_typ idl_opt (ReadBuf.read_sleb128 env) ^^ set_arg_typ ^^
read_byte_tagged
[ Opt.null_lit env
; let (set_val, get_val) = new_local env "val" in
get_arg_typ ^^ go_can_recover env t ^^ set_val ^^
get_val ^^ compile_eq_const (coercion_error_value env) ^^
E.if1 I64Type
(* decoding failed, but this is opt, so: return null *)
(Opt.null_lit env)
(* decoding succeeded, return opt value *)
(Opt.inject env get_val)
]
end
begin
(* this check corresponds to `not (null <: <t>)` in the spec *)
match normalize t with
| Prim Null | Opt _ | Any ->
(* Ignore and return null *)
skip get_idltyp ^^
Opt.null_lit env
| _ ->
(* Try constituent type *)
let (set_val, get_val) = new_local env "val" in
get_idltyp ^^ go_can_recover env t ^^ set_val ^^
get_val ^^ compile_eq_const (coercion_error_value env) ^^
E.if1 I64Type
(* decoding failed, but this is opt, so: return null *)
(Opt.null_lit env)
(* decoding succeeded, return opt value *)
(Opt.inject env get_val)
end
end
end
| Variant vs ->
let (set_val, get_val) = new_local env "val" in
with_composite_typ idl_variant (fun get_typ_buf ->
(* Find the tag *)
let (set_n, get_n) = new_local env "len" in
ReadBuf.read_leb128 env get_typ_buf ^^ set_n ^^
let (set_tagidx, get_tagidx) = new_local env "tagidx" in
ReadBuf.read_leb128 env get_data_buf ^^ set_tagidx ^^
get_tagidx ^^ get_n ^^
compile_comparison I64Op.LtU ^^
E.else_trap_with env "IDL error: variant index out of bounds" ^^
(* Zoom past the previous entries *)
get_tagidx ^^ from_0_to_n env (fun _ ->
get_typ_buf ^^ E.call_import env "rts" "skip_leb128" ^^
get_typ_buf ^^ E.call_import env "rts" "skip_leb128"
) ^^
(* Now read the tag *)
let (set_tag, get_tag) = new_local env "tag" in
ReadBuf.read_leb128 env get_typ_buf ^^ set_tag ^^
let (set_arg_typ, get_arg_typ) = new_local env "arg_typ" in
ReadBuf.read_sleb128 env get_typ_buf ^^ set_arg_typ ^^
List.fold_right (fun (h, {lab = l; typ = t; _}) continue ->
get_tag ^^ compile_eq_const (Wasm.I64_convert.extend_i32_u (Lib.Uint32.to_int32 h)) ^^
E.if1 I64Type
( Variant.inject env l (
get_arg_typ ^^ go env t ^^ set_val ^^
remember_failure get_val ^^
get_val
))
continue
)
( sort_by_hash vs )
( skip get_arg_typ ^^
coercion_failed "IDL error: unexpected variant tag" )
)
| Func _ ->
(* See Note [Candid subtype checks] *)
get_rel_buf_opt ^^
E.if1 I64Type
begin
get_idltyp ^^
idl_sub env t
end
(Bool.lit true) ^^ (* if we don't have a subtype memo table, assume the types are ok *)
E.if1 I64Type
(with_composite_typ idl_func (fun _get_typ_buf ->
read_byte_tagged
[ E.trap_with env "IDL error: unexpected function reference"
; let (set_actor, get_actor) = new_local env "actor" in
let (set_func, get_func) = new_local env "func" in
read_actor_data () ^^ set_actor ^^
read_text () ^^ set_func ^^
Arr.lit env Tagged.S [get_actor; get_func]
]))
(skip get_idltyp ^^
coercion_failed "IDL error: incompatible function type")
| Obj (Actor, _) ->
(* See Note [Candid subtype checks] *)
get_rel_buf_opt ^^
E.if1 I64Type
begin
get_idltyp ^^
idl_sub env t
end
(Bool.lit true) ^^
E.if1 I64Type
(with_composite_typ idl_service
(fun _get_typ_buf -> read_actor_data ()))
(skip get_idltyp ^^
coercion_failed "IDL error: incompatible actor type")
| Mut t ->
read_alias env (Mut t) (fun get_arg_typ on_alloc ->
let (set_result, get_result) = new_local env "result" in
MutBox.alloc env ^^ set_result ^^
on_alloc get_result ^^
get_result ^^
get_arg_typ ^^ go env t ^^
MutBox.store_field env
)
| Non ->
skip get_idltyp ^^
coercion_failed "IDL error: deserializing value of type None"
| _ -> todo_trap env "deserialize" (Arrange_ir.typ t)
end ^^
(* Parsed value on the stack, return that, unless the failure flag is set *)
when_failed (compile_unboxed_const (coercion_error_value env) ^^ G.i Return)
)
let serialize env ts : G.t =
let name = Strm.name_for "serialize" ts in
(* returns data/length pointers (will be GC’ed next time!) *)
Func.share_code1 Func.Always env name ("x", I64Type) [I64Type; I64Type] (fun env get_x ->
let (set_data_size, get_data_size) = new_local env "data_size" in
let (set_refs_size, get_refs_size) = new_local env "refs_size" in
let (tydesc, _offsets, _idltyps) = type_desc env Candid ts in
let tydesc_len = Int64.of_int (String.length tydesc) in
(* Get object sizes *)
get_x ^^
buffer_size env (Type.seq ts) ^^
set_refs_size ^^
set_data_size ^^
(* check for overflow *)
get_data_size ^^
compile_add_const tydesc_len ^^
compile_unboxed_const tydesc_len ^^
compile_comparison I64Op.LtU ^^
E.then_trap_with env "serialization overflow" ^^
let (set_data_start, get_data_start) = new_local env "data_start" in
let (set_refs_start, get_refs_start) = new_local env "refs_start" in
(* Create a stream with suitable capacity and given header *)
Strm.create env get_data_size set_data_start get_data_start tydesc ^^
get_refs_size ^^ compile_mul_const Heap.word_size ^^ Blob.dyn_alloc_scratch env ^^ set_refs_start ^^
(* Serialize x into the buffer *)
get_x ^^
get_data_start ^^
get_refs_start ^^
serialize_go env (Type.seq ts) ^^
(* Sanity check: Did we fill exactly the buffer *)
get_refs_start ^^ get_refs_size ^^ compile_mul_const Heap.word_size ^^ G.i (Binary (Wasm_exts.Values.I64 I64Op.Add)) ^^
compile_comparison I64Op.Eq ^^
E.else_trap_with env "reference buffer not filled" ^^
(* Verify that the stream is correctly filled *)
Strm.check_filled env get_data_start get_data_size ^^
get_refs_size ^^
compile_eq_const 0L ^^
E.else_trap_with env "cannot send references on IC System API" ^^
(* Extract the payload if possible *)
Strm.terminate env get_data_start get_data_size tydesc_len
)
let deserialize_from_blob extended env ts =
let ts_name = typ_seq_hash ts in
let name =
(* TODO(#3185): this specialization on `extended` seems redundant,
removing it might simplify things *and* share more code in binaries.
The only tricky bit might be the conditional Stack.dynamic_with_words bit... *)
if extended
then "@deserialize_extended<" ^ ts_name ^ ">"
else "@deserialize<" ^ ts_name ^ ">" in
Func.share_code2 Func.Always env name (("blob", I64Type), ("can_recover", I64Type)) (List.map (fun _ -> I64Type) ts) (fun env get_blob get_can_recover ->
let (set_data_size, get_data_size) = new_local env "data_size" in
let (set_refs_size, get_refs_size) = new_local env "refs_size" in
let (set_data_start, get_data_start) = new_local env "data_start" in
let (set_refs_start, get_refs_start) = new_local env "refs_start" in
let (set_arg_count, get_arg_count) = new_local env "arg_count" in
let (set_val, get_val) = new_local env "val" in
get_blob ^^ Blob.len env ^^ set_data_size ^^
get_blob ^^ Blob.payload_ptr_unskewed env ^^ set_data_start ^^
(* Allocate space for the reference buffer and copy it *)
compile_unboxed_const 0L ^^ set_refs_size (* none yet *) ^^
(* Allocate space for out parameters of parse_idl_header *)
Stack.with_words env "get_typtbl_size_ptr" 1L (fun get_typtbl_size_ptr ->
Stack.with_words env "get_typtbl_ptr" 1L (fun get_typtbl_ptr ->
Stack.with_words env "get_maintyps_ptr" 1L (fun get_maintyps_ptr ->
(* Allocate space for out parameters of idl_alloc_typtbl *)
Stack.with_words env "get_global_typtbl_ptr" 1L (fun get_global_typtbl_ptr ->
Stack.with_words env "get_global_typtbl_end_ptr" 1L (fun get_global_typtbl_end_ptr ->
Stack.with_words env "get_global_typtbl_size_ptr" 1L (fun get_global_typtbl_size_ptr ->
(* Set up read buffers *)
ReadBuf.alloc env (fun get_data_buf -> ReadBuf.alloc env (fun get_ref_buf ->
ReadBuf.set_ptr get_data_buf get_data_start ^^
ReadBuf.set_size get_data_buf get_data_size ^^
ReadBuf.set_ptr get_ref_buf get_refs_start ^^
ReadBuf.set_size get_ref_buf (get_refs_size ^^ compile_mul_const Heap.word_size) ^^
(* Go! *)
Bool.lit extended ^^ Bool.to_rts_int32 ^^ get_data_buf ^^ get_typtbl_ptr ^^ get_typtbl_size_ptr ^^ get_maintyps_ptr ^^
E.call_import env "rts" "parse_idl_header" ^^
(* Allocate global type type, if necessary for subtype checks *)
(if extended then
G.nop
else begin
get_global_candid_data env ^^
get_global_type_offsets env ^^
get_global_typtbl_ptr ^^ get_global_typtbl_end_ptr ^^ get_global_typtbl_size_ptr ^^
E.call_import env "rts" "idl_alloc_typtbl"
end) ^^
(* Allocate memo table, if necessary *)
with_rel_buf_opt env extended
(get_typtbl_size_ptr ^^ load_unskewed_ptr)
(get_global_typtbl_size_ptr ^^ load_unskewed_ptr)
(fun get_rel_buf_opt ->
begin
(* set up invariant register arguments *)
get_rel_buf_opt ^^ Registers.set_rel_buf_opt env ^^
get_data_buf ^^ Registers.set_data_buf env ^^
get_ref_buf ^^ Registers.set_ref_buf env ^^
get_typtbl_ptr ^^ load_unskewed_ptr ^^ Registers.set_typtbl env ^^
get_maintyps_ptr ^^ load_unskewed_ptr ^^ Registers.set_typtbl_end env ^^
get_typtbl_size_ptr ^^ load_unskewed_ptr ^^ Registers.set_typtbl_size env ^^
get_global_typtbl_ptr ^^ load_unskewed_ptr ^^ Registers.set_global_typtbl env ^^
get_global_typtbl_end_ptr ^^ load_unskewed_ptr ^^ Registers.set_global_typtbl_end env ^^
get_global_typtbl_size_ptr ^^ load_unskewed_ptr ^^ Registers.set_global_typtbl_size env ^^
Registers.reset_value_limit env get_blob get_rel_buf_opt
end ^^
(* set up a dedicated read buffer for the list of main types *)
ReadBuf.alloc env (fun get_main_typs_buf ->
ReadBuf.set_ptr get_main_typs_buf (get_maintyps_ptr ^^ load_unskewed_ptr) ^^
ReadBuf.set_end get_main_typs_buf (ReadBuf.get_end get_data_buf) ^^
ReadBuf.read_leb128 env get_main_typs_buf ^^ set_arg_count ^^
G.concat_map (fun t ->
let can_recover, default_or_trap = Type.(
match normalize t with
| Prim Null | Opt _ | Any ->
(Bool.lit true, fun msg -> Opt.null_lit env)
| _ ->
(get_can_recover, fun msg ->
get_can_recover ^^
E.if1 I64Type
(compile_unboxed_const (coercion_error_value env))
(E.trap_with env msg)))
in
get_arg_count ^^
compile_eq_const 0L ^^
E.if1 I64Type
(default_or_trap ("IDL error: too few arguments " ^ ts_name))
(begin
(* set up variable frame arguments *)
Stack.with_frame env "frame_ptr" 3L (fun () ->
(* idltyp *)
ReadBuf.read_sleb128 env get_main_typs_buf ^^
Stack.set_local env StackArgs.idltyp ^^
(* depth *)
compile_unboxed_const 0L ^^
Stack.set_local env StackArgs.depth ^^
(* recovery mode *)
can_recover ^^
Stack.set_local env StackArgs.can_recover ^^
deserialize_go env t
)
^^ set_val ^^
get_arg_count ^^ compile_sub_const 1L ^^ set_arg_count ^^
get_val ^^ compile_eq_const (coercion_error_value env) ^^
(E.if1 I64Type
(default_or_trap "IDL error: coercion failure encountered")
get_val)
end)
) ts ^^
(* Skip any extra arguments *)
compile_while env
(get_arg_count ^^ compile_rel_const I64Op.GtU 0L)
begin
get_data_buf ^^
get_typtbl_ptr ^^ load_unskewed_ptr ^^
ReadBuf.read_sleb128 env get_main_typs_buf ^^
G.i (Convert (Wasm_exts.Values.I32 I32Op.WrapI64)) ^^
compile_const_32 0l ^^
E.call_import env "rts" "skip_any" ^^
get_arg_count ^^ compile_sub_const 1L ^^ set_arg_count
end ^^
ReadBuf.is_empty env get_data_buf ^^
E.else_trap_with env ("IDL error: left-over bytes " ^ ts_name) ^^
ReadBuf.is_empty env get_ref_buf ^^
E.else_trap_with env ("IDL error: left-over references " ^ ts_name) ^^
(* Safety guard: The temporary pointers in the registers must no longer be used when a GC increment runs. *)
Registers.clear_registers env
)))))))))
))
let deserialize env ts =
IC.arg_data env ^^
Bool.lit false ^^ (* can't recover *)
deserialize_from_blob false env ts
(*
Note [speculating for short (S)LEB encoded bignums]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#3098 highlighted that a lot of heap garbage can be generated while reading in
(S)LEB-encoded bignums. To make heap consumption optimal for every compactly
representable `Int`, we resort to speculatively reading a 64-byte chunk from
the `ReadBuf`. We call it speculative, because it may read past the end of the
buffer (and thus end up containing junk bytes) or even fail because reading
across Wasm page boundaries could cause trapping. (Consider the buffer ending
3 bytes before the last-memory-page boundary and issuing a speculative 64-bit read for the
address 2 bytes less than buffer end.) In case of failure to read data, `-1`
(a sentinel) is returned. (The sentinel could be use-case specific when later
the need arises.)
In most cases the speculative read will come back with valid bytes. How many
of those are relevant, can be judged by consulting the buffer-end pointer or
analysing the 64-bit word directly. In the case of (S)LEB, the continuation and
termination bits can be filtered and thus the encoding's last byte detected when
present in the 64-bit word.
If such a LEB boundary is detected, avenues open up for a much faster (than
bytewise-sequential) parsing.
After the data is interpreted, it's the client's responsibility to adjust the
current buffer position.
*)
(*
Note [mutable stable values]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We currently use a Candid derivative to serialize stable values. In addition to
storing sharable data, we can also store mutable data (records with mutable
fields and mutable arrays), and we need to preserve aliasing.
To that end we extend Candid with a type constructor `alias t`.
In the type table, alias t is represented by type code 1. All Candid type constructors
are represented by negative numbers, so this cannot clash with anything and,
conveniently, makes such values illegal Candid.
The values of `alias t` are either
* i8(0) 0x00000000 0x00000000 M(v)
for one (typically the first) occurrence of v
The first 0x00000000 is the “memo field”, the second is the “type hash field”.
Both are scratch spaces for the benefit of the decoder.
We use **pointer compression** to store 64-bit pointer that are potentially larger
than 4GB but small enough to fit into 32-bit with the compressed representation.
Pointers are expected to refer to at most 8GB as the memory representation may grow
up to two times by switching from 32-bit to 64-bit.
or
* i8(1) i32(offset) M(v)
for all other occurrences of v, where offset is the relative position of the
above occurrences from this reference.
We map Motoko types to this as follows:
e([var t]) = alias e([t]) = alias vec e(t)
e({var field : t}) = record { field : alias e(t) }
Why different? Because we need to alias arrays as a whole (we can’t even alias
their fields, as they are manifestly part of the array heap structure), but
aliasing records does not work, as aliased record values may appear at
different types (due to subtyping), and Candid serialization is type-driven.
Luckily records put all mutable fields behind an indirection (MutBox), so this
works.
The type-driven code in this module treats `Type.Mut` to always refer to an
`MutBox`; for arrays the mutable case is handled directly.
To detect and preserve aliasing, these steps are taken:
* In `buffer_size`, when we see a mutable thing (`Array` or `MutBox`), the
first time, we mark it by setting the heap tag to `StableSeen`.
This way, when we see it a second time, we can skip the value in the size
calculation.
* In `serialize`, when we see it a first time (tag still `StableSeen`),
we serialize it (first form above), and remember the absolute position
in the output buffer, abusing the heap tag here.
(Invariant: This absolute position is never `StableSeen`)
Upon a second visit (tag not `StableSeen`), we can thus fetch that absolute
position and calculate the offset.
* In `deserialize`, when we come across a `alias t`, we follow the offset (if
needed) to find the content.
If the memo field is still `0x00000000`, this is the first time we read
this, so we deserialize to the Motoko heap, and remember the **compressed**
64-bit vanilla pointer by overwriting the memo field.
We also store the **compressed** pointer to a blob with the type hash of
the type we are serializing at in the type hash field.
NOTE for 64-bit destabilization: The Candid destabilization format historically
only reserves 32-bit space for remembering addresses of aliases. However, when
upgrading from old Candid destabilization to new enhanced orthogonal persistence,
the deserialized objects may occupy larger object space (worst case the double space),
such that pointers may be larger than 4GB. Therefore, we use pointer compression to
safely narrow 64-bit addresses into 32-bit Candid(ish) memo space. The compression
relies on the property that the 3 lower bits of the unskewed pointer are zero due
to the 8-bit (64-bit) object alignment.
If it is not `0x00000000` then we can simply read the **compressed** pointer
from there, after checking the type hash field to make sure we are aliasing at
the same type.
*)
(*
Note [Candid subtype checks]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Deserializing Candid values requires a Candid subtype check when
deserializing values of reference types (actors and functions).
The subtype test is performed directly on the expected and actual
candid type tables using RTS functions `idl_sub_buf_words`,
`idl_sub_buf_init` and `idl_sub`. One type table and vector of types
is generated statically from the list of statically known types
encountered during code generation, the other is determined
dynamically by, e.g. message payload. The latter will vary with
each payload to decode.
The static type table and a type descriptor are stored in passive
data segments. Instead of absolute memory addresses, the static type
table in the data segment only contains relative offsets into type
descriptor. When loaded, these offsets are patched by static addresses
that point into the type descriptor.
The known Motoko types are accumulated in a global list as required
and then, in a final compilation step, encoded to global type table
and the type descriptor (sequence of type indices). The encoding is
stored in passive data segments referenced (by way of segment indices)
from dedicated wasm globals so that we can generate code that
references the globals before their final definitions are known.
Deserializing a proper (not extended) Candid value stack allocates a
mutable word buffer, of size determined by `idl_sub_buf_words`.
The word buffer is used to initialize and provide storage for a
Rust memo table (see bitrel.rs) memoizing the result of sub and
super type tests performed during deserialization of a given Candid
value sequence. The memo table is initialized once, using `idl_sub_buf_init`,
then shared between recursive calls to deserialize, by threading the (possibly
null) wasm address of the word buffer as an optional argument. The
word buffer is stack allocated in generated code, not Rust, because
it's size is dynamic and Rust doesn't seem to support dynamically-sized
stack allocation.
Currently, we only perform Candid subtype checks when decoding proper
(not extended) Candid values. Extended values are required for
stable variables only: we can omit the check, because compatibility
should already be enforced by the static signature compatibility
check. We use the `null`-ness of the word buffer pointer to
dynamically determine whether to omit or perform Candid subtype checks.
NB: Extending `idl_sub` to support extended, "stable" types (with mutable,
invariant type constructors) would require extending the polarity argument
from a Boolean to a three-valued argument to efficiently check equality for
invariant type constructors in a single pass.
*)
end (* Serialization *)
(* OldStabilization as migration code:
Deserializing a last time from Candid-serialized stable objects into the stable heap:
* stable variables; and
* virtual stable memory.
c.f.
* ../../design/Stable.md
* ../../design/StableMemory.md
*)
module OldStabilization = struct
let load_word32 = G.i (Load {ty = I32Type; align = 0; offset = 0L; sz = None})
let store_word32 = G.i (Store {ty = I32Type; align = 0; offset = 0L; sz = None})
let write_word32 env = StableMem.write env false "word32" I32Type 4L store_word32
(* read and clear word32 from stable mem offset on stack *)
let read_and_clear_word32 env =
match E.mode env with
| Flags.ICMode | Flags.RefMode ->
Func.share_code1 Func.Always env "__stablemem_read_and_clear_word32"
("offset", I64Type) [I64Type]
(fun env get_offset ->
Stack.with_words env "temp_ptr" 1L (fun get_temp_ptr ->
let (set_word, get_word) = new_local32 env "word" in
(* read word *)
get_temp_ptr ^^
get_offset ^^
compile_unboxed_const 4L ^^
StableMem.stable64_read env ^^
get_temp_ptr ^^ load_word32 ^^
set_word ^^
(* write 0 *)
get_temp_ptr ^^ compile_const_32 0l ^^ store_word32 ^^
get_offset ^^
get_temp_ptr ^^
compile_unboxed_const 4L ^^
StableMem.stable64_write env ^^
(* return word *)
get_word ^^
G.i (Convert (Wasm_exts.Values.I64 I64Op.ExtendUI32))
))
| _ -> assert false
(* TODO: rewrite using MemoryFill *)
let blob_clear env =
Func.share_code1 Func.Always env "blob_clear" ("x", I64Type) [] (fun env get_x ->
let (set_ptr, get_ptr) = new_local env "ptr" in
let (set_len, get_len) = new_local env "len" in
get_x ^^
Blob.as_ptr_len env ^^
set_len ^^
set_ptr ^^
(* round to word size *)
get_len ^^
compile_add_const (Int64.sub Heap.word_size 1L) ^^
compile_divU_const Heap.word_size ^^
(* clear all words *)
from_0_to_n env (fun get_i ->
get_ptr ^^
compile_unboxed_const 0L ^^
store_unskewed_ptr ^^
get_ptr ^^
compile_add_const Heap.word_size ^^
set_ptr))
let candid_destabilize env ty save_version =
match E.mode env with
| Flags.ICMode | Flags.RefMode ->
let (set_pages, get_pages) = new_local env "pages" in
StableMem.stable64_size env ^^
set_pages ^^
get_pages ^^
compile_test I64Op.Eqz ^^
E.if1 I64Type
begin
(* Case: Size zero ==> Nothing in stable memory,
so result becomes the nil-valued record. *)
let (_, fs) = Type.as_obj ty in
let fs' = List.map
(fun f -> (f.Type.lab, fun () -> Opt.null_lit env))
fs
in
StableMem.get_mem_size env ^^
compile_test I64Op.Eqz ^^
E.else_trap_with env "StableMem.mem_size non-zero" ^^
compile_unboxed_const StableMem.version_stable_heap_no_regions ^^
save_version ^^
Object.lit_raw env fs'
end
begin
(* Case: Non-zero size. *)
let (set_marker, get_marker) = new_local env "marker" in
let (set_len, get_len) = new_local env "len" in
let (set_offset, get_offset) = new_local env "offset" in
compile_unboxed_const 0L ^^
read_and_clear_word32 env ^^
set_marker ^^
get_marker ^^
compile_test I64Op.Eqz ^^
E.if0
begin
(* Sub-Case: version 1 or 2:
Regions/Experimental API and stable vars. *)
let (set_M, get_M) = new_local env "M" in
let (set_version, get_version) = new_local env "version" in
let (set_N, get_N) = new_local env "N" in
StableMem.stable64_size env ^^
compile_sub_const 1L ^^
compile_shl_const (Int64.of_int page_size_bits) ^^
set_M ^^
(* read version *)
get_M ^^
compile_add_const (Int64.sub page_size 4L) ^^
read_and_clear_word32 env ^^
set_version ^^
get_version ^^
save_version ^^
(* check version *)
get_version ^^
compile_unboxed_const (StableMem.version_max) ^^
compile_comparison I64Op.GtU ^^
E.then_trap_with env (Printf.sprintf
"higher stable memory version (expected 1..%s)"
(Int64.to_string StableMem.version_max)) ^^
(* restore StableMem bytes [0..4) *)
compile_unboxed_const 0L ^^
get_M ^^
compile_add_const (Int64.sub page_size 8L) ^^
read_and_clear_word32 env ^^
G.i (Convert (Wasm_exts.Values.I32 I32Op.WrapI64)) ^^
write_word32 env ^^
(* restore mem_size *)
get_M ^^
compile_add_const (Int64.sub page_size 12L) ^^
read_and_clear_word32 env ^^ (*TODO: use 64 bits *)
StableMem.set_mem_size env ^^
StableMem.get_mem_size env ^^
compile_shl_const (Int64.of_int page_size_bits) ^^
set_N ^^
(* set len *)
get_N ^^
read_and_clear_word32 env ^^
set_len ^^
(* set offset *)
get_N ^^
compile_add_const 4L ^^
set_offset
end
begin
(* Sub-Case: Version 0.
Stable vars with NO Regions/Experimental API. *)
(* assert mem_size == 0 *)
StableMem.get_mem_size env ^^
compile_test I64Op.Eqz ^^
E.else_trap_with env "unexpected, non-zero stable memory size" ^^
(* set len *)
get_marker ^^
set_len ^^
(* set offset *)
compile_unboxed_const 4L ^^
set_offset ^^
compile_unboxed_const (Int64.of_int 0) ^^
save_version
end ^^ (* if_ *)
let (set_blob, get_blob) = new_local env "blob" in
(* read blob from stable memory *)
Blob.alloc env Tagged.B get_len ^^ set_blob ^^
get_blob ^^ Blob.payload_ptr_unskewed env ^^
get_offset ^^
get_len ^^
StableMem.stable64_read env ^^
let (set_val, get_val) = new_local env "val" in
(* deserialize blob to val *)
get_blob ^^
Bool.lit false ^^ (* can't recover *)
Serialization.deserialize_from_blob true env [ty] ^^
set_val ^^
(* clear blob contents *)
get_blob ^^
blob_clear env ^^
(* copy zeros from blob to stable memory *)
get_offset ^^
get_blob ^^ Blob.payload_ptr_unskewed env ^^
get_blob ^^ Blob.len env ^^
StableMem.stable64_write env ^^
(* return val *)
get_val
end
| _ -> assert false
let load env actor_type upgrade_version =
candid_destabilize env actor_type upgrade_version ^^
UpgradeStatistics.add_instructions env
end
(* New stable memory layout with dedicated version for enhanced orthogonal persistence.
This prevents unwanted forward compatibility of old compiled programs that rely on Candid destabilization.
This also helps to detect graph-copy-based destabilization that has priority over enhanced orthogonal persistence.
If size == 0: empty
let end = physical size * page_size
If logical size N > 0:
[0..4) 0 (first word is backed up at `end-8`)
[4..N) <stable memory>
<zero padding>
[end-16..end-8) <size N>
[end-8..end-4) <first word>
[end-4..end) <new version>
ending at page boundary
Note: The first word must be empty to distinguish this version from the Candid legacy version 0 (which has first word != 0).
*)
module NewStableMemory = struct
let physical_size env =
IC.system_call env "stable64_size" ^^
compile_shl_const (Int64.of_int page_size_bits)
let store_at_end env offset typ get_value =
physical_size env ^^
compile_sub_const offset ^^
get_value ^^
match typ with
| I32Type -> StableMem.write_word32 env
| I64Type -> StableMem.write_word64 env
| _ -> assert false
let read_from_end env offset typ =
physical_size env ^^
compile_sub_const offset ^^
match typ with
| I32Type -> StableMem.read_word32 env
| I64Type -> StableMem.read_word64 env
| _ -> assert false
let clear_at_end env offset typ =
store_at_end env offset typ
(match typ with
| I32Type -> compile_const_32 0l
| I64Type -> compile_unboxed_const 0L
| _ -> assert false
)
let logical_size_offset = 16L
let first_word_backup_offset = 8L
let version_offset = 4L
let upgrade_version_from_candid env =
StableMem.set_version env ^^
StableMem.get_version env ^^
compile_eq_const StableMem.legacy_version_no_stable_memory ^^
StableMem.get_version env ^^
compile_eq_const StableMem.legacy_version_some_stable_memory ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Or)) ^^
E.if1 I64Type
begin
compile_unboxed_const StableMem.version_stable_heap_no_regions
end
begin
StableMem.get_version env ^^
compile_eq_const StableMem.legacy_version_regions ^^
E.else_trap_with env "Unsupported stable memory version when upgrading from Candid stabilization" ^^
compile_unboxed_const StableMem.version_stable_heap_regions
end ^^
StableMem.set_version env
let upgrade_version_from_graph_stabilization env =
StableMem.get_version env ^^
compile_eq_const StableMem.version_graph_copy_no_regions ^^
E.if1 I64Type
begin
compile_unboxed_const StableMem.version_stable_heap_no_regions
end
begin
StableMem.get_version env ^^
compile_eq_const StableMem.version_graph_copy_regions ^^
E.else_trap_with env "Unsupported stable memory version when upgrading from graph-copy-based stabilization" ^^
compile_unboxed_const StableMem.version_stable_heap_regions
end ^^
StableMem.set_version env
let grow_size env amount =
StableMem.get_mem_size env ^^
compile_shl_const (Int64.of_int page_size_bits) ^^
compile_unboxed_const amount ^^
StableMem.ensure env
let backup env =
let (set_first_word, get_first_word) = new_local32 env "first_word" in
physical_size env ^^
compile_test I64Op.Eqz ^^
E.if0
G.nop
begin
(* read and clear first word *)
compile_unboxed_const 0L ^^ StableMem.read_word32 env ^^ set_first_word ^^
compile_unboxed_const 0L ^^ compile_const_32 0l ^^ StableMem.write_word32 env ^^
grow_size env logical_size_offset ^^
(* backup logical size *)
store_at_end env logical_size_offset I64Type (StableMem.get_mem_size env) ^^
(* backup first word *)
store_at_end env first_word_backup_offset I32Type get_first_word ^^
(* store the version *)
store_at_end env version_offset I32Type (StableMem.get_version env ^^ G.i (Convert (Wasm_exts.Values.I32 I32Op.WrapI64)))
end
let restore env =
let (set_first_word, get_first_word) = new_local32 env "first_word" in
physical_size env ^^
compile_test I64Op.Eqz ^^
E.if0
begin
compile_unboxed_const 0L ^^ StableMem.set_mem_size env
end
begin
(* check the version *)
read_from_end env version_offset I32Type ^^
G.i (Convert (Wasm_exts.Values.I64 I64Op.ExtendUI32)) ^^
StableMem.set_version env ^^
StableMem.get_version env ^^
compile_eq_const StableMem.version_stable_heap_no_regions ^^
StableMem.get_version env ^^
compile_eq_const StableMem.version_stable_heap_regions ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Or)) ^^
E.else_trap_with env (Printf.sprintf
"unsupported stable memory version (expected %s or %s)"
(Int64.to_string StableMem.version_stable_heap_no_regions)
(Int64.to_string StableMem.version_stable_heap_regions)) ^^
(* read first word *)
read_from_end env first_word_backup_offset I32Type ^^
set_first_word ^^
(* restore logical size *)
read_from_end env logical_size_offset I64Type ^^
StableMem.set_mem_size env ^^
(* clear size and version *)
clear_at_end env logical_size_offset I64Type ^^
clear_at_end env first_word_backup_offset I32Type ^^
clear_at_end env version_offset I32Type ^^
(* restore first word *)
compile_unboxed_const 0L ^^ get_first_word ^^ StableMem.write_word32 env
end
end
(* Enhanced orthogonal persistence *)
module EnhancedOrthogonalPersistence = struct
let load_stable_actor env = E.call_import env "rts" "load_stable_actor"
let save_stable_actor env = E.call_import env "rts" "save_stable_actor"
let free_stable_actor env = E.call_import env "rts" "free_stable_actor"
let create_type_descriptor env actor_type =
let (candid_type_desc, type_offsets, type_indices) = Serialization.(type_desc env Persistence [actor_type]) in
let serialized_offsets = StaticBytes.(as_bytes [i64s (List.map Int64.of_int type_offsets)]) in
assert (type_indices = [0l]);
Blob.lit env Tagged.B candid_type_desc ^^
Blob.lit env Tagged.B serialized_offsets
let register_stable_type env actor_type =
create_type_descriptor env actor_type ^^
E.call_import env "rts" "register_stable_type"
let load_old_field env field get_old_actor =
if field.Type.typ = Type.(Opt Any) then
(* A stable variable may have been promoted to type `Any`: Therefore, drop its former content. *)
Opt.inject env (Tuple.compile_unit env)
else
(get_old_actor ^^ Object.load_idx_raw env field.Type.lab)
let empty_actor env actor_type =
let (_, field_declarations) = Type.as_obj actor_type in
let field_initializers = List.map
(fun field -> (field.Type.lab, fun () -> Opt.null_lit env))
field_declarations
in
Object.lit_raw env field_initializers
(* Support additional fields in an upgraded actor. *)
let upgrade_actor env actor_type =
let set_old_actor, get_old_actor = new_local env "old_actor" in
let get_field_value field =
get_old_actor ^^
Object.contains_field env field.Type.lab ^^
(E.if1 I64Type
(load_old_field env field get_old_actor)
(Opt.null_lit env)
) in
let (_, field_declarations) = Type.as_obj actor_type in
let field_initializers = List.map
(fun field -> (field.Type.lab, fun () -> (get_field_value field)))
field_declarations
in
set_old_actor ^^
Object.lit_raw env field_initializers
let recover_actor env actor_type =
load_stable_actor env ^^
upgrade_actor env actor_type ^^
free_stable_actor env
let save env actor_type =
IC.get_actor_to_persist env ^^
save_stable_actor env ^^
NewStableMemory.backup env ^^
UpgradeStatistics.set_instructions env
let load env actor_type =
register_stable_type env actor_type ^^
load_stable_actor env ^^
compile_test I64Op.Eqz ^^
(E.if1 I64Type
(empty_actor env actor_type)
(recover_actor env actor_type)
) ^^
NewStableMemory.restore env ^^
UpgradeStatistics.add_instructions env
let initialize env actor_type =
register_stable_type env actor_type
end (* EnhancedOrthogonalPersistence *)
(* As fallback when doing persistent memory layout changes. *)
module GraphCopyStabilization = struct
let is_graph_stabilization_started env =
E.call_import env "rts" "is_graph_stabilization_started" ^^ Bool.from_rts_int32
let start_graph_stabilization env actor_type =
EnhancedOrthogonalPersistence.create_type_descriptor env actor_type ^^
E.call_import env "rts" "start_graph_stabilization"
let graph_stabilization_increment env =
E.call_import env "rts" "graph_stabilization_increment" ^^ Bool.from_rts_int32
let start_graph_destabilization env actor_type =
EnhancedOrthogonalPersistence.create_type_descriptor env actor_type ^^
E.call_import env "rts" "start_graph_destabilization"
let graph_destabilization_increment env =
E.call_import env "rts" "graph_destabilization_increment" ^^ Bool.from_rts_int32
let get_graph_destabilized_actor env actor_type =
E.call_import env "rts" "get_graph_destabilized_actor" ^^
EnhancedOrthogonalPersistence.upgrade_actor env actor_type
end
module GCRoots = struct
let register_static_variables env =
E.(env.object_pool.frozen) := true;
Func.share_code0 Func.Always env "initialize_root_array" [] (fun env ->
let length = Int64.of_int (E.object_pool_size env) in
compile_unboxed_const length ^^
E.call_import env "rts" "initialize_static_variables" ^^
E.iterate_object_pool env (fun index allocation ->
compile_unboxed_const (Int64.of_int index) ^^
allocation env ^^
E.call_import env "rts" "set_static_variable"
)
)
end (* GCRoots *)
module StackRep = struct
open SR
(*
Most expressions have a “preferred”, most optimal, form. Hence,
compile_exp put them on the stack in that form, and also returns
the form it chose.
But the users of compile_exp usually want a specific form as well.
So they use compile_exp_as, indicating the form they expect.
compile_exp_as then does the necessary coercions.
*)
let of_arity n =
if n = 1 then Vanilla else UnboxedTuple n
(* The stack rel of a primitive type, i.e. what the binary operators expect *)
let of_type t =
let open Type in
match normalize t with
| Prim Bool -> SR.bool
| Prim (Nat | Int) -> Vanilla
| Prim ((Nat8 | Nat16 | Nat32 | Nat64 | Int8 | Int16 | Int32 | Int64 | Char) as pty) -> UnboxedWord64 pty
| Prim (Text | Blob | Principal) -> Vanilla
| Prim Float -> UnboxedFloat64
| Obj (Actor, _) -> Vanilla
| Func (Shared _, _, _, _, _) -> Vanilla
| p -> todo "StackRep.of_type" (Arrange_ir.typ p) Vanilla
(* The env looks unused, but will be needed once we can use multi-value, to register
the complex types in the environment.
For now, multi-value block returns are handled via FakeMultiVal. *)
let to_block_type env = function
| Vanilla -> [I64Type]
| UnboxedWord64 _ -> [I64Type]
| UnboxedFloat64 -> [F64Type]
| UnboxedTuple n -> Lib.List.make n I64Type
| Const _ -> []
| Unreachable -> []
let to_string = function
| Vanilla -> "Vanilla"
| UnboxedWord64 pty -> prim_fun_name pty "UnboxedWord64"
| UnboxedFloat64 -> "UnboxedFloat64"
| UnboxedTuple n -> Printf.sprintf "UnboxedTuple %d" n
| Unreachable -> "Unreachable"
| Const _ -> "Const"
let join (sr1 : t) (sr2 : t) = match sr1, sr2 with
| _, _ when SR.eq sr1 sr2 -> sr1
| Unreachable, sr2 -> sr2
| sr1, Unreachable -> sr1
| Const _, Const _ -> Vanilla
| Const _, sr2_ -> sr2
| sr1, Const _ -> sr1
| _, Vanilla -> Vanilla
| Vanilla, _ -> Vanilla
| UnboxedTuple n, UnboxedTuple m when n = m -> sr1
| _, _ ->
Printf.eprintf "Invalid stack rep join (%s, %s)\n"
(to_string sr1) (to_string sr2); sr1
let joins = List.fold_left join Unreachable
let drop env (sr_in : t) =
match sr_in with
| Vanilla | UnboxedWord64 _ | UnboxedFloat64 -> G.i Drop
| UnboxedTuple n -> G.table n (fun _ -> G.i Drop)
| Const _ | Unreachable -> G.nop
let rec build_constant env = function
| Const.Lit (Const.Vanilla value) -> E.Vanilla value
| Const.Lit (Const.Bool number) -> E.Vanilla (Bool.vanilla_lit number)
| Const.Lit (Const.Text payload) -> Blob.constant env Tagged.T payload
| Const.Lit (Const.Blob payload) -> Blob.constant env Tagged.B payload
| Const.Lit (Const.Null) -> E.Vanilla Opt.null_vanilla_lit
| Const.Lit (Const.BigInt number) -> BigNum.constant env number
| Const.Lit (Const.Word64 (pty, number)) -> BoxedWord64.constant env pty number
| Const.Lit (Const.Float64 number) -> Float.constant env number
| Const.Opt value -> Opt.constant env (build_constant env value)
| Const.Fun (_, get_fi, _) -> Closure.constant env get_fi
| Const.Message _ -> assert false
| Const.Unit -> E.Vanilla (Tuple.unit_vanilla_lit env)
| Const.Tag (tag, value) ->
let payload = build_constant env value in
Tagged.shared_object env (fun env ->
let materialized_payload = Tagged.materialize_shared_value env payload in
Variant.inject env tag materialized_payload
)
| Const.Array elements ->
let constant_elements = List.map (build_constant env) elements in
Arr.constant env Tagged.I constant_elements
| Const.Tuple elements ->
let constant_elements = List.map (build_constant env) elements in
Arr.constant env Tagged.T constant_elements
| Const.Obj fields ->
let constant_fields = List.map (fun (name, value) -> (name, build_constant env value)) fields in
Object.constant env constant_fields
let materialize_constant env value =
Tagged.materialize_shared_value env (build_constant env value)
let adjust env (sr_in : t) sr_out =
if eq sr_in sr_out
then G.nop
else match sr_in, sr_out with
| Unreachable, Unreachable -> G.nop
| Unreachable, _ -> G.i Unreachable
| UnboxedTuple n, Vanilla -> Tuple.from_stack env n
| Vanilla, UnboxedTuple n -> Tuple.to_stack env n
(* BoxedWord64 types *)
| UnboxedWord64 (Type.(Int64 | Nat64) as pty), Vanilla ->
BoxedWord64.box env pty
| Vanilla, UnboxedWord64 (Type.(Int64 | Nat64) as pty) ->
BoxedWord64.unbox env pty
(* TaggedSmallWord types *)
| UnboxedWord64 (Type.(Int8 | Nat8 | Int16 | Nat16 | Int32 | Nat32 | Char) as pty), Vanilla ->
TaggedSmallWord.tag env pty
| Vanilla, UnboxedWord64 (Type.(Nat8 | Int8 | Nat16 | Int16 | Int32 | Nat32 | Char) as pty) ->
TaggedSmallWord.untag env pty
| UnboxedFloat64, Vanilla -> Float.box env
| Vanilla, UnboxedFloat64 -> Float.unbox env
| Const value, Vanilla ->
materialize_constant env value
| Const Const.Lit (Const.Vanilla n), UnboxedWord64 ty ->
compile_unboxed_const n ^^
TaggedSmallWord.untag env ty
| Const Const.Lit (Const.Word64 (ty1, n)), UnboxedWord64 ty2 when ty1 = ty2 ->
compile_unboxed_const n
| Const Const.Lit (Const.Float64 f), UnboxedFloat64 -> Float.compile_unboxed_const f
| Const c, UnboxedTuple 0 -> G.nop
| Const Const.Tuple cs, UnboxedTuple n ->
assert (n = List.length cs);
G.concat_map (fun c -> materialize_constant env c) cs
| _, _ ->
Printf.eprintf "Unknown stack_rep conversion %s -> %s\n"
(to_string sr_in) (to_string sr_out);
assert false
end (* StackRep *)
module VarEnv = struct
(* A type to record where Motoko names are stored. *)
type varloc =
(* A Wasm Local of the current function, directly containing the value,
in the given stackrep (Vanilla, UnboxedWord64, …) so far
Used for immutable and mutable, non-captured data *)
| Local of SR.t * int32
(* A Wasm Local of the current function, that points to memory location,
which is a MutBox. Used for mutable captured data *)
| HeapInd of int32
(* A static variable accessed by an index via the runtime system, refers to a MutBox,
belonging to the GC root set *)
| Static of int64
(* Constant literals can reside in dynamic heap *)
| Const of Const.v
(* public method *)
| PublicMethod of int32 * string
let is_non_local : varloc -> bool = function
| Local _
| HeapInd _ -> false
| Static _
| PublicMethod _
| Const _ -> true
type lvl = TopLvl | NotTopLvl
(*
The source variable environment:
- Whether we are on the top level
- In-scope variables
- scope jump labels
*)
module NameEnv = Env.Make(String)
type t = {
lvl : lvl;
vars : (varloc * Type.typ) NameEnv.t; (* variables ↦ their location and type *)
labels : G.depth NameEnv.t; (* jump label ↦ their depth *)
}
let empty_ae = {
lvl = TopLvl;
vars = NameEnv.empty;
labels = NameEnv.empty;
}
(* Creating a local environment, resetting the local fields,
and removing bindings for local variables (unless they are at global locations)
*)
let mk_fun_ae ae = { ae with
lvl = NotTopLvl;
vars = NameEnv.filter (fun v (l, _) ->
let non_local = is_non_local l in
(* For debugging, enable this:
(if not non_local then Printf.eprintf "VarEnv.mk_fun_ae: Removing %s\n" v);
*)
non_local
) ae.vars;
}
let lookup ae var =
match NameEnv.find_opt var ae.vars with
| Some e -> Some e
| None -> Printf.eprintf "Could not find %s\n" var; None
let lookup_var ae var =
match lookup ae var with
| Some (l, _) -> Some l
| None -> None
let needs_capture ae var = match lookup_var ae var with
| Some l -> not (is_non_local l)
| None -> assert false
let add_local_with_heap_ind env (ae : t) name typ =
let i = E.add_anon_local env I64Type in
E.add_local_name env i name;
({ ae with vars = NameEnv.add name ((HeapInd i), typ) ae.vars }, i)
let add_static_variable (ae : t) name index typ =
{ ae with vars = NameEnv.add name ((Static index), typ) ae.vars }
let add_local_public_method (ae : t) name (fi, exported_name) typ =
{ ae with vars = NameEnv.add name ((PublicMethod (fi, exported_name) : varloc), typ) ae.vars }
let add_local_const (ae : t) name cv typ =
{ ae with vars = NameEnv.add name ((Const cv : varloc), typ) ae.vars }
let add_local_local env (ae : t) name sr i typ =
{ ae with vars = NameEnv.add name ((Local (sr, i)), typ) ae.vars }
let add_direct_local env (ae : t) name sr typ =
let i = E.add_anon_local env (SR.to_var_type sr) in
E.add_local_name env i name;
(add_local_local env ae name sr i typ, i)
(* Adds the names to the environment and returns a list of setters *)
let rec add_arguments env (ae : t) as_local = function
| [] -> ae
| ((name, typ) :: remainder) ->
if as_local name then
let i = E.add_anon_local env I64Type in
E.add_local_name env i name;
let ae' = { ae with vars = NameEnv.add name ((Local (SR.Vanilla, i)), typ) ae.vars } in
add_arguments env ae' as_local remainder
else
let index = MutBox.add_global_mutbox env in
let ae' = add_static_variable ae name index typ in
add_arguments env ae' as_local remainder
let add_argument_locals env (ae : t) =
add_arguments env ae (fun _ -> true)
let add_label (ae : t) name (d : G.depth) =
{ ae with labels = NameEnv.add name d ae.labels }
let get_label_depth (ae : t) name : G.depth =
match NameEnv.find_opt name ae.labels with
| Some d -> d
| None -> raise (CodegenError (Printf.sprintf "Could not find %s\n" name))
end (* VarEnv *)
(* type for wrapping code with context, context is establishment
of (pattern) binding, argument is the code using the binding,
result is e.g. the code for `case p e`. *)
type scope_wrap = G.t -> G.t
let unmodified : scope_wrap = fun code -> code
let rec can_be_pointer typ nested_optional =
Type.(match normalize typ with
| Mut t -> (can_be_pointer t nested_optional)
| Opt t -> (if nested_optional then true else (can_be_pointer t true))
| Prim (Null| Bool | Char | Nat8 | Nat16 | Int8 | Int16) | Non | Tup [] -> false
| _ -> true)
let potential_pointer typ : bool =
(* must not eliminate nested optional types as they refer to a heap object for ??null, ???null etc. *)
can_be_pointer typ false
module Var = struct
(* This module is all about looking up Motoko variables in the environment,
and dealing with mutable variables *)
open VarEnv
(* Returns desired stack representation, preparation code and code to consume
the value onto the stack *)
let set_val env ae var : G.t * SR.t * G.t = match VarEnv.lookup ae var with
| Some ((Local (sr, i)), _) ->
G.nop,
sr,
G.i (LocalSet (nr i))
| Some ((HeapInd i), typ) when potential_pointer typ ->
G.i (LocalGet (nr i)) ^^
Tagged.load_forwarding_pointer env ^^
compile_add_const ptr_unskew ^^
compile_add_const (Int64.mul MutBox.field Heap.word_size),
SR.Vanilla,
Tagged.write_with_barrier env
| Some ((HeapInd i), typ) ->
G.i (LocalGet (nr i)),
SR.Vanilla,
MutBox.store_field env
| Some ((Static index), typ) when potential_pointer typ ->
Heap.get_static_variable env index ^^
Tagged.load_forwarding_pointer env ^^
compile_add_const ptr_unskew ^^
compile_add_const (Int64.mul MutBox.field Heap.word_size),
SR.Vanilla,
Tagged.write_with_barrier env
| Some ((Static index), typ) ->
Heap.get_static_variable env index,
SR.Vanilla,
MutBox.store_field env
| Some ((Const _), _) -> fatal "set_val: %s is const" var
| Some ((PublicMethod _), _) -> fatal "set_val: %s is PublicMethod" var
| None -> fatal "set_val: %s missing" var
(* Stores the payload. Returns stack preparation code, and code that consumes the values from the stack *)
let set_val_vanilla env ae var : G.t * G.t =
let pre_code, sr, code = set_val env ae var in
pre_code, StackRep.adjust env SR.Vanilla sr ^^ code
(* Stores the payload (which is found on the stack, in Vanilla stackrep) *)
let set_val_vanilla_from_stack env ae var : G.t =
let pre_code, code = set_val_vanilla env ae var in
if G.is_nop pre_code
then code
else
(* Need to shuffle the stack entries *)
let (set_x, get_x) = new_local env "var_scrut" in
set_x ^^
pre_code ^^
get_x ^^
code
(* Returns the payload (optimized representation) *)
let get_val (env : E.t) (ae : VarEnv.t) var = match VarEnv.lookup_var ae var with
| Some (Local (sr, i)) ->
sr, G.i (LocalGet (nr i))
| Some (HeapInd i) ->
SR.Vanilla, G.i (LocalGet (nr i)) ^^ MutBox.load_field env
| Some (Static index) ->
SR.Vanilla,
Heap.get_static_variable env index ^^
MutBox.load_field env
| Some (Const c) ->
SR.Const c, G.nop
| Some (PublicMethod (_, name)) ->
SR.Vanilla,
IC.get_self_reference env ^^
IC.actor_public_field env name
| None -> assert false
(* Returns the payload (vanilla representation) *)
let get_val_vanilla (env : E.t) (ae : VarEnv.t) var =
let sr, code = get_val env ae var in
code ^^ StackRep.adjust env sr SR.Vanilla
(* Returns the value to put in the closure,
and code to restore it, including adding to the environment
*)
let capture old_env ae0 var : G.t * (E.t -> VarEnv.t -> VarEnv.t * scope_wrap) =
match VarEnv.lookup ae0 var with
| Some ((Local (sr, i)), typ) ->
( G.i (LocalGet (nr i)) ^^ StackRep.adjust old_env sr SR.Vanilla
, fun new_env ae1 ->
(* we use SR.Vanilla in the restored environment. We could use sr;
like for parameters hard to predict what’s better *)
let ae2, j = VarEnv.add_direct_local new_env ae1 var SR.Vanilla typ in
let restore_code = G.i (LocalSet (nr j))
in ae2, fun body -> restore_code ^^ body
)
| Some ((HeapInd i), typ) ->
( G.i (LocalGet (nr i))
, fun new_env ae1 ->
let ae2, j = VarEnv.add_local_with_heap_ind new_env ae1 var typ in
let restore_code = G.i (LocalSet (nr j))
in ae2, fun body -> restore_code ^^ body
)
| _ -> assert false
(* This is used when putting a mutable field into an object.
In the IR, mutable fields of objects are pre-allocated as MutBox objects,
to allow the async/await.
So we expect the variable to be in a HeapInd (pointer to MutBox on the heap),
or Static (static variable represented as a MutBox that is accessed via the
runtime system) and we use the pointer.
*)
let get_aliased_box env ae var = match VarEnv.lookup_var ae var with
| Some (HeapInd i) -> G.i (LocalGet (nr i))
| Some (Static index) -> Heap.get_static_variable env index
| _ -> assert false
let capture_aliased_box env ae var = match VarEnv.lookup_var ae var with
| Some (HeapInd i) ->
G.i (LocalSet (nr i))
| _ -> assert false
end (* Var *)
(* Calling well-known prelude functions *)
(* FIXME: calling into the prelude will not work if we ever need to compile a program
that requires top-level cps conversion;
use new prims instead *)
module Internals = struct
let call_prelude_function env ae var =
match VarEnv.lookup_var ae var with
| Some (VarEnv.Const Const.Fun (_, mk_fi, _)) ->
compile_unboxed_zero ^^ (* A dummy closure *)
G.i (Call (nr (mk_fi())))
| _ -> assert false
let add_cycles env ae = call_prelude_function env ae "@add_cycles"
let reset_cycles env ae = call_prelude_function env ae "@reset_cycles"
let reset_refund env ae = call_prelude_function env ae "@reset_refund"
end
(* This comes late because it also deals with messages *)
module FuncDec = struct
let bind_args env ae0 first_arg args =
let rec go i ae = function
| [] -> ae
| a::args ->
(* Function arguments are always vanilla, due to subtyping and uniform representation.
We keep them as such here for now. We _could_ always unpack those that can be unpacked
(Nat32 etc.). It is generally hard to predict which strategy is better. *)
let ae' = VarEnv.add_local_local env ae a.it SR.Vanilla (Int32.of_int i) a.note in
go (i+1) ae' args in
go first_arg ae0 args
(* Create a WebAssembly func from a pattern (for the argument) and the body.
Parameter `captured` should contain the, well, captured local variables that
the function will find in the closure. *)
let compile_local_function outer_env outer_ae restore_env args mk_body ret_tys at =
let arg_names = List.map (fun a -> a.it, I64Type) args in
let return_arity = List.length ret_tys in
let retty = Lib.List.make return_arity I64Type in
let ae0 = VarEnv.mk_fun_ae outer_ae in
Func.of_body outer_env (["clos", I64Type] @ arg_names) retty (fun env -> G.with_region at (
let get_closure = G.i (LocalGet (nr 0l)) ^^ Tagged.load_forwarding_pointer env in
let ae1, closure_codeW = restore_env env ae0 get_closure in
(* Add arguments to the environment (shifted by 1) *)
let ae2 = bind_args env ae1 1 args in
closure_codeW (mk_body env ae2)
))
let message_start env sort = match sort with
| Type.(Shared Write) ->
Lifecycle.(trans env InUpdate)
| Type.(Shared Query) ->
Lifecycle.(trans env InQuery)
| Type.(Shared Composite) ->
Lifecycle.(trans env InComposite)
| _ -> assert false
let message_cleanup env sort = match sort with
| Type.(Shared Write) ->
Lifecycle.get env ^^
compile_eq_const (Lifecycle.(int_of_state InStabilization)) ^^
Lifecycle.get env ^^
compile_eq_const (Lifecycle.(int_of_state InDestabilization)) ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Or)) ^^
E.if0
G.nop
begin
GC.collect_garbage env ^^
Lifecycle.(trans env Idle)
end
| Type.Shared Type.Query ->
Lifecycle.(trans env PostQuery)
| Type.Shared Type.Composite ->
(* Stay in composite query state such that callbacks of
composite queries can also use the memory reserve.
The state is isolated since memory changes of queries
are rolled back by the IC runtime system. *)
Lifecycle.(trans env InComposite)
| _ -> assert false
let callback_start env =
Lifecycle.(is_in env InComposite) ^^
E.if0
(G.nop)
(message_start env Type.(Shared Write))
let callback_cleanup env =
Lifecycle.(is_in env InComposite) ^^
E.if0
(G.nop)
(message_cleanup env (Type.Shared Type.Write))
let compile_const_message outer_env outer_ae sort control args mk_body ret_tys at : E.func_with_names =
let ae0 = VarEnv.mk_fun_ae outer_ae in
Func.of_body outer_env [] [] (fun env -> G.with_region at (
message_start env sort ^^
(* cycles *)
Internals.reset_cycles env outer_ae ^^
Internals.reset_refund env outer_ae ^^
(* reply early for a oneway *)
(if control = Type.Returns
then
Tuple.compile_unit env ^^
Serialization.serialize env [] ^^
IC.reply_with_data env
else G.nop) ^^
(* Deserialize argument and add params to the environment *)
let arg_list = List.map (fun a -> (a.it, a.note)) args in
let arg_names = List.map (fun a -> a.it) args in
let arg_tys = List.map (fun a -> a.note) args in
let ae1 = VarEnv.add_argument_locals env ae0 arg_list in
Serialization.deserialize env arg_tys ^^
G.concat_map (Var.set_val_vanilla_from_stack env ae1) (List.rev arg_names) ^^
mk_body env ae1 ^^
message_cleanup env sort
))
(* Compile a closed function declaration (captures no local variables) *)
let closed pre_env sort control name args mk_body fun_rhs ret_tys at =
if Type.is_shared_sort sort
then begin
let (fi, fill) = E.reserve_fun pre_env name in
( Const.Message fi, fun env ae ->
fill (compile_const_message env ae sort control args mk_body ret_tys at)
)
end else begin
assert (control = Type.Returns);
let lf = E.make_lazy_function pre_env name in
let fun_id = E.get_constant_function_id pre_env in
( Const.Fun (fun_id, (fun () -> Lib.AllocOnUse.use lf), fun_rhs), fun env ae ->
let restore_no_env _env ae _ = ae, unmodified in
Lib.AllocOnUse.def lf (lazy (compile_local_function env ae restore_no_env args mk_body ret_tys at))
)
end
(* Compile a closure declaration (captures local variables) *)
let closure env ae sort control name captured args mk_body ret_tys at =
let is_local = sort = Type.Local in
let set_clos, get_clos = new_local env (name ^ "_clos") in
let len = Wasm.I64.of_int_u (List.length captured) in
let store_env, restore_env =
let rec go i = function
| [] -> (G.nop, fun _env ae1 _ -> ae1, unmodified)
| (v::vs) ->
let store_rest, restore_rest = go (i + 1) vs in
let store_this, restore_this = Var.capture env ae v in
let store_env =
get_clos ^^
store_this ^^
Closure.store_data env (Wasm.I64.of_int_u i) ^^
store_rest in
let restore_env env ae1 get_env =
let ae2, codeW = restore_this env ae1 in
let ae3, code_restW = restore_rest env ae2 get_env in
(ae3,
fun body ->
get_env ^^
Closure.load_data env (Wasm.I64.of_int_u i) ^^
codeW (code_restW body)
)
in store_env, restore_env in
go 0 captured in
let f =
if is_local
then compile_local_function env ae restore_env args mk_body ret_tys at
else assert false (* no first class shared functions yet *) in
let fi = E.add_fun env name f in
let code =
(* Allocate a heap object for the closure *)
Tagged.alloc env (Int64.add Closure.header_size len) Tagged.Closure ^^
set_clos ^^
(* Store the function pointer number: *)
get_clos ^^
compile_unboxed_const (Wasm.I64_convert.extend_i32_u (E.add_fun_ptr env fi)) ^^
Tagged.store_field env Closure.funptr_field ^^
(* Store the length *)
get_clos ^^
compile_unboxed_const len ^^
Tagged.store_field env Closure.len_field ^^
(* Store all captured values *)
store_env ^^
get_clos ^^
Tagged.allocation_barrier env ^^
G.i Drop
in
if is_local
then
SR.Vanilla,
code ^^
get_clos
else assert false (* no first class shared functions *)
let lit env ae name sort control free_vars args mk_body ret_tys at =
let captured = List.filter (VarEnv.needs_capture ae) free_vars in
if ae.VarEnv.lvl = VarEnv.TopLvl then assert (captured = []);
if captured = []
then
let (ct, fill) = closed env sort control name args mk_body Const.Complicated ret_tys at in
fill env ae;
(SR.Const ct, G.nop)
else closure env ae sort control name captured args mk_body ret_tys at
(* Returns a closure corresponding to a future (async block) *)
let async_body env ae ts free_vars mk_body at =
(* We compile this as a local, returning function, so set return type to [] *)
let sr, code = lit env ae "anon_async" Type.Local Type.Returns free_vars [] mk_body [] at in
code ^^
StackRep.adjust env sr SR.Vanilla
(* Takes the reply and reject callbacks, tuples them up (with administrative extras),
adds them to the continuation table, and returns the two callbacks expected by
ic.call_new.
The tupling is necessary because we want to free _both_/_all_ closures
when the call is answered.
The reply callback function exists once per type (as it has to do
deserialization); the reject callback function is unique.
*)
let closures_to_reply_reject_callbacks_aux env ts_opt =
let arity, reply_name, from_arg_data =
match ts_opt with
| Some ts ->
(List.length ts,
"@callback<" ^ Typ_hash.typ_hash (Type.Tup ts) ^ ">",
fun env -> Serialization.deserialize env ts)
| None ->
(1,
"@callback",
(fun env ->
Blob.of_size_copy env Tagged.B
(fun env ->
IC.system_call env "msg_arg_data_size")
(fun env ->
IC.system_call env "msg_arg_data_copy")
(fun env -> compile_unboxed_const 0L)))
in
Func.define_built_in env reply_name ["env", I64Type] [] (fun env ->
callback_start env ^^
(* Look up continuation *)
let (set_closure, get_closure) = new_local env "closure" in
G.i (LocalGet (nr 0l)) ^^
ContinuationTable.recall env ^^
Arr.load_field env 0L ^^ (* get the reply closure *)
set_closure ^^
get_closure ^^
Closure.prepare_closure_call env ^^
(* Deserialize/Blobify reply arguments *)
from_arg_data env ^^
get_closure ^^
Closure.call_closure env arity 0 ^^
callback_cleanup env
);
let reject_name = "@reject_callback" in
Func.define_built_in env reject_name ["env", I64Type] [] (fun env ->
callback_start env ^^
(* Look up continuation *)
let (set_closure, get_closure) = new_local env "closure" in
G.i (LocalGet (nr 0l)) ^^
ContinuationTable.recall env ^^
Arr.load_field env 1L ^^ (* get the reject closure *)
set_closure ^^
get_closure ^^
Closure.prepare_closure_call env ^^
(* Synthesize value of type `Text`, the error message
(The error code is fetched via a prim)
*)
IC.error_value env ^^
get_closure ^^
Closure.call_closure env 1 0 ^^
callback_cleanup env
);
(* result is a function that accepts a list of closure getters, from which
the first and second must be the reply and reject continuations. *)
fun closure_getters ->
let set_cb_index, get_cb_index = new_local env "cb_index" in
Arr.lit env Tagged.T closure_getters ^^
ContinuationTable.remember env ^^
set_cb_index ^^
(* return arguments for the ic.call *)
compile_unboxed_const (Wasm.I64_convert.extend_i32_u (E.add_fun_ptr env (E.built_in env reply_name))) ^^
get_cb_index ^^
compile_unboxed_const (Wasm.I64_convert.extend_i32_u (E.add_fun_ptr env (E.built_in env reject_name))) ^^
get_cb_index
let closures_to_reply_reject_callbacks env ts =
closures_to_reply_reject_callbacks_aux env (Some ts)
let closures_to_raw_reply_reject_callbacks env =
closures_to_reply_reject_callbacks_aux env None
let ignoring_callback env =
(* for one-way calls, we use an invalid table entry as the callback. this
way, the callback, when it comes back, will (safely) trap, even if the
module has completely changed in between. This way, one-way calls do not
get in the way of safe instantaneous upgrades *)
compile_unboxed_const 0xFFFF_FFFFL (* IC does not support -1 in 64-bit, thus use zero-extended 32-bit -1 *)
let cleanup_callback env =
let name = "@cleanup_callback" in
Func.define_built_in env name ["env", I64Type] [] (fun env ->
G.i (LocalGet (nr 0l)) ^^
ContinuationTable.recall env ^^
Arr.load_field env 2L ^^ (* get the cleanup closure *)
let set_closure, get_closure = new_local env "closure" in
set_closure ^^ get_closure ^^
Closure.prepare_closure_call env ^^
get_closure ^^
Closure.call_closure env 0 0);
compile_unboxed_const (Wasm.I64_convert.extend_i32_u (E.add_fun_ptr env (E.built_in env name)))
let ic_call_threaded env purpose get_meth_pair push_continuations
add_data add_cycles =
match E.mode env with
| Flags.ICMode
| Flags.RefMode ->
let message = Printf.sprintf "could not perform %s" purpose in
let (set_cb_index, get_cb_index) = new_local env "cb_index" in
(* The callee *)
get_meth_pair ^^ Arr.load_field env 0L ^^ Blob.as_ptr_len env ^^
(* The method name *)
get_meth_pair ^^ Arr.load_field env 1L ^^ Blob.as_ptr_len env ^^
(* The reply and reject callback *)
push_continuations ^^
set_cb_index ^^ get_cb_index ^^
(* initiate call *)
IC.system_call env "call_new" ^^
cleanup_callback env ^^
get_cb_index ^^
IC.system_call env "call_on_cleanup" ^^
(* the data *)
add_data get_cb_index ^^
IC.system_call env "call_data_append" ^^
(* the cycles *)
add_cycles ^^
(* done! *)
IC.system_call env "call_perform" ^^
G.i (Convert (Wasm_exts.Values.I64 I64Op.ExtendUI32)) ^^
IC.set_call_perform_status env ^^
Blob.lit env Tagged.T message ^^
IC.set_call_perform_message env ^^
IC.get_call_perform_status env ^^
compile_unboxed_const 0L ^^
compile_comparison I64Op.Ne ^^
(* save error code, cleanup on error *)
E.if0
begin (* send failed *)
if !Flags.trap_on_call_error then
E.trap_with env message
else
(* Recall (don't leak) continuations *)
get_cb_index ^^
ContinuationTable.recall env ^^
G.i Drop
end
begin (* send succeeded *)
G.nop
end
| _ ->
E.trap_with env (Printf.sprintf "cannot perform %s when running locally" purpose)
let ic_call env ts1 ts2 get_meth_pair get_arg get_k get_r get_c =
ic_call_threaded
env
"remote call"
get_meth_pair
(closures_to_reply_reject_callbacks env ts2 [get_k; get_r; get_c])
(fun _ -> get_arg ^^ Serialization.serialize env ts1)
let ic_call_raw env get_meth_pair get_arg get_k get_r get_c =
ic_call_threaded
env
"raw call"
get_meth_pair
(closures_to_raw_reply_reject_callbacks env [get_k; get_r; get_c])
(fun _ -> get_arg ^^ Blob.as_ptr_len env)
let ic_self_call env ts get_meth_pair get_future get_k get_r get_c =
ic_call_threaded
env
"self call"
get_meth_pair
(* Storing the tuple away, future_array_index = 3, keep in sync with rts/continuation_table.rs *)
(closures_to_reply_reject_callbacks env ts [get_k; get_r; get_c; get_future])
(fun get_cb_index ->
get_cb_index ^^
TaggedSmallWord.msb_adjust Type.Nat32 ^^
Serialization.serialize env Type.[Prim Nat32])
let ic_call_one_shot env ts get_meth_pair get_arg add_cycles =
match E.mode env with
| Flags.ICMode
| Flags.RefMode ->
(* The callee *)
get_meth_pair ^^ Arr.load_field env 0L ^^ Blob.as_ptr_len env ^^
(* The method name *)
get_meth_pair ^^ Arr.load_field env 1L ^^ Blob.as_ptr_len env ^^
(* The reply callback *)
ignoring_callback env ^^
compile_unboxed_const 0L ^^
(* The reject callback *)
ignoring_callback env ^^
compile_unboxed_const 0L ^^
IC.system_call env "call_new" ^^
(* the data *)
get_arg ^^ Serialization.serialize env ts ^^
IC.system_call env "call_data_append" ^^
(* the cycles *)
add_cycles ^^
IC.system_call env "call_perform" ^^
G.i (Convert (Wasm_exts.Values.I64 I64Op.ExtendUI32)) ^^
(* This is a one-shot function: just remember error code *)
(if !Flags.trap_on_call_error then
(* legacy: discard status, proceed as if all well *)
G.i Drop ^^
compile_unboxed_zero ^^
IC.set_call_perform_status env ^^
Blob.lit env Tagged.T "" ^^
IC.set_call_perform_message env
else
IC.set_call_perform_status env ^^
Blob.lit env Tagged.T "could not perform oneway" ^^
IC.set_call_perform_message env)
| _ -> assert false
let equate_msgref env =
let (set_meth_pair1, get_meth_pair1) = new_local env "meth_pair1" in
let (set_meth_pair2, get_meth_pair2) = new_local env "meth_pair2" in
set_meth_pair2 ^^ set_meth_pair1 ^^
get_meth_pair1 ^^ Arr.load_field env 0L ^^
get_meth_pair2 ^^ Arr.load_field env 0L ^^
Blob.compare env (Some Operator.EqOp) ^^
E.if1 I64Type
begin
get_meth_pair1 ^^ Arr.load_field env 1L ^^
get_meth_pair2 ^^ Arr.load_field env 1L ^^
Blob.compare env (Some Operator.EqOp)
end
begin
Bool.lit false
end
let export_async_method env =
let name = IC.async_method_name in
begin match E.mode env with
| Flags.ICMode | Flags.RefMode ->
Func.define_built_in env name [] [] (fun env ->
let (set_closure, get_closure) = new_local env "closure" in
message_start env (Type.Shared Type.Write) ^^
(* Check that we are calling this *)
IC.assert_caller_self env ^^
(* Deserialize and look up continuation argument *)
Serialization.deserialize env Type.[Prim Nat32] ^^
TaggedSmallWord.lsb_adjust Type.Nat32 ^^
ContinuationTable.peek_future env ^^
set_closure ^^
get_closure ^^
Closure.prepare_closure_call env ^^
get_closure ^^
Closure.call_closure env 0 0 ^^
message_cleanup env (Type.Shared Type.Write)
);
let fi = E.built_in env name in
E.add_export env (nr {
name = Lib.Utf8.decode ("canister_update " ^ name);
edesc = nr (FuncExport (nr fi))
})
| _ -> ()
end
let export_gc_trigger_method env =
let name = IC.gc_trigger_method_name in
begin match E.mode env with
| Flags.ICMode | Flags.RefMode ->
Func.define_built_in env name [] [] (fun env ->
(* THe GC trigger is also blocked during incremental (de)stabilization.
This is checked in `Lifecycle.trans` being called by `message_start` *)
message_start env (Type.Shared Type.Write) ^^
(* Check that we are called from this or a controller, w/o allocation *)
IC.assert_caller_self_or_controller env ^^
(* To avoid more failing allocation, don't deserialize args nor serialize reply,
i.e. don't even try to do this:
Serialization.deserialize env [] ^^
Tuple.compile_unit env ^^
Serialization.serialize env [] ^^
*)
(* Instead, just ignore the argument and
send a *statically* allocated, nullary reply *)
IC.static_nullary_reply env ^^
(* Finally, act like
message_cleanup env (Type.Shared Type.Write)
but *force* collection *)
GC.record_mutator_instructions env ^^
E.collect_garbage env true ^^
GC.record_collector_instructions env ^^
Lifecycle.trans env Lifecycle.Idle
);
let fi = E.built_in env name in
E.add_export env (nr {
name = Lib.Utf8.decode ("canister_update " ^ name);
edesc = nr (FuncExport (nr fi))
})
| _ -> ()
end
let export_stabilization_limits env =
let moc_stabilization_instruction_limit_fi =
E.add_fun env "moc_stabilization_instruction_limit" (
Func.of_body env [] [I64Type] (fun env ->
(* To use the instruction budget well during upgrade,
offer the entire upgrade instruction limit for the destabilization,
since the stabilization can also be run before the upgrade. *)
Lifecycle.during_explicit_upgrade env ^^
E.if1 I64Type
(compile_unboxed_const (Int64.of_int Flags.(!stabilization_instruction_limit.update_call)))
(compile_unboxed_const (Int64.of_int Flags.(!stabilization_instruction_limit.upgrade)))
)
) in
E.add_export env (nr {
name = Lib.Utf8.decode "moc_stabilization_instruction_limit";
edesc = nr (FuncExport (nr moc_stabilization_instruction_limit_fi))
});
let moc_stable_memory_access_limit_fi =
E.add_fun env "moc_stable_memory_access_limit" (
Func.of_body env [] [I64Type] (fun env ->
Lifecycle.during_explicit_upgrade env ^^
E.if1 I64Type
(compile_unboxed_const (Int64.of_int Flags.(!stable_memory_access_limit.update_call)))
(compile_unboxed_const (Int64.of_int Flags.(!stable_memory_access_limit.upgrade)))
)
) in
E.add_export env (nr {
name = Lib.Utf8.decode "moc_stable_memory_access_limit";
edesc = nr (FuncExport (nr moc_stable_memory_access_limit_fi))
})
end (* FuncDec *)
module IncrementalGraphStabilization = struct
let register_globals env =
E.add_global64 env "__stabilization_completed" Mutable 0L;
E.add_global64 env "__destabilized_actor" Mutable 0L
let is_stabilization_completed env =
G.i (GlobalGet (nr (E.get_global env "__stabilization_completed")))
let set_stabilization_completed env =
G.i (GlobalSet (nr (E.get_global env "__stabilization_completed")))
let get_destabilized_actor env =
G.i (GlobalGet (nr (E.get_global env "__destabilized_actor")))
let set_destabilized_actor env =
G.i (GlobalSet (nr (E.get_global env "__destabilized_actor")))
let async_stabilization_method_name = "@motoko_async_stabilization"
let async_stabilization_reply_callback_name = "@async_stabilization_reply_callback"
let async_stabilization_reply_callback env =
Int64.of_int32 (E.add_fun_ptr env (E.built_in env async_stabilization_reply_callback_name))
let async_stabilization_reject_callback_name = "@async_stabilization_reject_callback"
let async_stabilization_reject_callback env =
Int64.of_int32 (E.add_fun_ptr env (E.built_in env async_stabilization_reject_callback_name))
let call_async_stabilization env =
IC.get_self_reference env ^^ Blob.as_ptr_len env ^^
Blob.lit_ptr_len env Tagged.T async_stabilization_method_name ^^
compile_unboxed_const (async_stabilization_reply_callback env) ^^ compile_unboxed_const 0L ^^
compile_unboxed_const (async_stabilization_reject_callback env) ^^ compile_unboxed_const 0L ^^
IC.system_call env "call_new" ^^
IC.system_call env "call_perform" ^^
G.i (Convert (Wasm_exts.Values.I64 I64Op.ExtendUI32)) ^^
E.then_trap_with env "Async stabilization increment call failed"
let define_async_stabilization_reply_callback env =
Func.define_built_in env async_stabilization_reply_callback_name ["env", I64Type] [] (fun env ->
is_stabilization_completed env ^^
E.if0
begin
(* Sucessful completion of the async stabilization sequence. *)
IC.static_nullary_reply env
(* Skip garbage collection. *)
(* Stay in lifecycle state `InStabilization`. *)
end
begin
(* Trigger next async stabilization increment. *)
call_async_stabilization env
end)
let define_async_stabilization_reject_callback env =
Func.define_built_in env async_stabilization_reject_callback_name ["env", I64Type] [] (fun env ->
IC.error_message env ^^
Blob.as_ptr_len env ^^
IC.system_call env "msg_reject")
let export_async_stabilization_method env =
let name = async_stabilization_method_name in
begin match E.mode env with
| Flags.ICMode | Flags.RefMode ->
Func.define_built_in env name [] [] (fun env ->
IC.assert_caller_self_or_controller env ^^
(* All messages are blocked except this method and the upgrade. *)
Lifecycle.trans env Lifecycle.InStabilization ^^
(* Skip argument deserialization to avoid allocations. *)
GraphCopyStabilization.graph_stabilization_increment env ^^
set_stabilization_completed env ^^
IC.static_nullary_reply env
(* Skip garbage collection. *)
(* Stay in lifecycle state `InStabilization`. *)
);
let fi = E.built_in env name in
E.add_export env (nr {
name = Lib.Utf8.decode ("canister_update " ^ name);
edesc = nr (FuncExport (nr fi))
})
| _ -> ()
end
let start_graph_stabilization env actor_type =
GraphCopyStabilization.is_graph_stabilization_started env ^^
(E.if0
G.nop
begin
(* Extra safety measure stopping the GC during incremental stabilization,
although it should not be called in lifecycle state `InStabilization`. *)
E.call_import env "rts" "stop_gc_before_stabilization" ^^
IC.get_actor_to_persist env ^^
GraphCopyStabilization.start_graph_stabilization env actor_type
end)
let export_stabilize_before_upgrade_method env actor_type =
let name = "__motoko_stabilize_before_upgrade" in
begin match E.mode env with
| Flags.ICMode | Flags.RefMode ->
Func.define_built_in env name [] [] (fun env ->
IC.assert_caller_self_or_controller env ^^
(* All messages are blocked except this method and the upgrade. *)
Lifecycle.trans env Lifecycle.InStabilization ^^
start_graph_stabilization env actor_type ^^
call_async_stabilization env
(* Stay in lifecycle state `InStabilization`. *)
);
let fi = E.built_in env name in
E.add_export env (nr {
name = Lib.Utf8.decode ("canister_update " ^ name);
edesc = nr (FuncExport (nr fi))
})
| _ -> ()
end
let complete_stabilization_on_upgrade env actor_type =
start_graph_stabilization env actor_type ^^
G.loop0
begin
GraphCopyStabilization.graph_stabilization_increment env ^^
E.if0
G.nop
(G.i (Br (nr 1l)))
end
let async_destabilization_method_name = "@motoko_async_destabilization"
let async_destabilization_reply_callback_name = "@async_destabilization_reply_callback"
let async_destabilization_reply_callback env =
Int64.of_int32 (E.add_fun_ptr env (E.built_in env async_destabilization_reply_callback_name))
let async_destabilization_reject_callback_name = "@async_destabilization_reject_callback"
let async_destabilization_reject_callback env =
Int64.of_int32 (E.add_fun_ptr env (E.built_in env async_destabilization_reject_callback_name))
let call_async_destabilization env =
IC.get_self_reference env ^^ Blob.as_ptr_len env ^^
Blob.lit_ptr_len env Tagged.T async_destabilization_method_name ^^
compile_unboxed_const (async_destabilization_reply_callback env) ^^ compile_unboxed_const 0L ^^
compile_unboxed_const (async_destabilization_reject_callback env) ^^ compile_unboxed_const 0L ^^
IC.system_call env "call_new" ^^
IC.system_call env "call_perform" ^^
G.i (Convert (Wasm_exts.Values.I64 I64Op.ExtendUI32)) ^^
E.then_trap_with env "Async destabilization increment call failed"
let complete_graph_destabilization env =
IC.initialize_main_actor env ^^
(* Allow other messages and allow garbage collection. *)
E.call_import env "rts" "start_gc_after_destabilization" ^^
Lifecycle.trans env Lifecycle.Idle
let define_async_destabilization_reply_callback env =
Func.define_built_in env async_destabilization_reply_callback_name ["env", I64Type] [] (fun env ->
get_destabilized_actor env ^^
compile_test I64Op.Eqz ^^
E.if0
begin
(* Trigger next async destabilization increment. *)
call_async_destabilization env
end
begin
(* Send static reply of sucessful async destabilization sequence. *)
IC.static_nullary_reply env
(* Stay in lifecycle state `InDestabilization`. *)
end)
let define_async_destabilization_reject_callback env =
Func.define_built_in env async_destabilization_reject_callback_name ["env", I64Type] [] (fun env ->
IC.error_message env ^^
Blob.as_ptr_len env ^^
IC.system_call env "msg_reject")
let destabilization_increment env actor_type =
get_destabilized_actor env ^^
compile_test I64Op.Eqz ^^
(E.if0
begin
GraphCopyStabilization.graph_destabilization_increment env ^^
(E.if0
begin
GraphCopyStabilization.get_graph_destabilized_actor env actor_type ^^
set_destabilized_actor env ^^
complete_graph_destabilization env
end
G.nop)
end
G.nop)
let export_async_destabilization_method env actor_type =
let name = async_destabilization_method_name in
begin match E.mode env with
| Flags.ICMode | Flags.RefMode ->
Func.define_built_in env name [] [] (fun env ->
IC.assert_caller_self_or_controller env ^^
(* Stay in lifecycle state `InDestabilization` if not yet completed. *)
destabilization_increment env actor_type ^^
IC.static_nullary_reply env
);
let fi = E.built_in env name in
E.add_export env (nr {
name = Lib.Utf8.decode ("canister_update " ^ name);
edesc = nr (FuncExport (nr fi))
})
| _ -> ()
end
let partial_destabilization_on_upgrade env actor_type =
(* TODO: Verify that the post_upgrade hook cannot be directly called by the IC *)
(* Garbage collection is disabled in `start_graph_destabilization` until destabilization has completed. *)
GraphCopyStabilization.start_graph_destabilization env actor_type ^^
get_destabilized_actor env ^^
compile_test I64Op.Eqz ^^
E.if0
begin
destabilization_increment env actor_type ^^
get_destabilized_actor env ^^
(E.if0
G.nop
begin
(* All messages remain blocked except this method. *)
Lifecycle.trans env Lifecycle.InDestabilization
(* Since the canister initialization cannot perform async calls, the destabilization
needs to be explicitly continued by calling `__motoko_destabilize_after_upgrade`. *)
end)
end
G.nop
let export_destabilize_after_upgrade_method env =
let name = "__motoko_destabilize_after_upgrade" in
begin match E.mode env with
| Flags.ICMode | Flags.RefMode ->
Func.define_built_in env name [] [] (fun env ->
(* All messages are blocked except this method. *)
IC.assert_caller_self_or_controller env ^^
(* Skip argument deserialization to avoid allocations. *)
call_async_destabilization env
(* Stay in lifecycle state `InDestabilization`. *)
);
let fi = E.built_in env name in
E.add_export env (nr {
name = Lib.Utf8.decode ("canister_update " ^ name);
edesc = nr (FuncExport (nr fi))
})
| _ -> ()
end
let load env =
get_destabilized_actor env ^^
compile_test I64Op.Eqz ^^
E.then_trap_with env "Destabilization is not yet completed: Call __motoko_destabilize_after_upgrade" ^^
get_destabilized_actor env
(* Upgrade costs are already record in RTS for graph-copy-based (de-)stabilization. *)
let define_methods env actor_type =
define_async_stabilization_reply_callback env;
define_async_stabilization_reject_callback env;
export_async_stabilization_method env;
export_stabilize_before_upgrade_method env actor_type;
define_async_destabilization_reply_callback env;
define_async_destabilization_reject_callback env;
export_async_destabilization_method env actor_type;
export_destabilize_after_upgrade_method env;
end (* IncrementalGraphStabilization *)
module Persistence = struct
(* Stable memory version at the time of the canister upgrade or initialization.
This version can be different to `StableMem.get_version` because the upgrade logic
may update the stable memory version, e.g. lift to enhanced orthogonal persistence. *)
let register_globals env =
E.add_global64 env "__persistence_version" Mutable 0L;
E.add_global64 env "__init_message_payload" Mutable 0L
let get_persistence_version env =
G.i (GlobalGet (nr (E.get_global env "__persistence_version")))
let set_persistence_version env =
G.i (GlobalSet (nr (E.get_global env "__persistence_version")))
(* No GC running during destabilization while this global blob reference is used. *)
let get_init_message_payload env =
G.i (GlobalGet (nr (E.get_global env "__init_message_payload")))
let set_init_message_payload env =
G.i (GlobalSet (nr (E.get_global env "__init_message_payload")))
let use_candid_destabilization env =
get_persistence_version env ^^
compile_unboxed_const StableMem.legacy_version_regions ^^ (* Version 0 to 2 *)
compile_comparison I64Op.LeU
let use_graph_destabilization env =
get_persistence_version env ^^
compile_eq_const StableMem.version_graph_copy_no_regions ^^
get_persistence_version env ^^
compile_eq_const StableMem.version_graph_copy_regions ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Or))
let use_enhanced_orthogonal_persistence env =
get_persistence_version env ^^
compile_eq_const StableMem.version_stable_heap_no_regions ^^
get_persistence_version env ^^
compile_eq_const StableMem.version_stable_heap_regions ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Or))
let initialize env actor_type =
E.call_import env "rts" "read_persistence_version" ^^
set_persistence_version env ^^
use_graph_destabilization env ^^
E.if0
begin
IncrementalGraphStabilization.partial_destabilization_on_upgrade env actor_type
(* Potentially stay in lifecycle state `InDestabilization` *)
end
begin
IC.initialize_main_actor env ^^
Lifecycle.trans env Lifecycle.Idle
end
let load env actor_type =
use_enhanced_orthogonal_persistence env ^^
(E.if1 I64Type
(EnhancedOrthogonalPersistence.load env actor_type)
begin
use_graph_destabilization env ^^
E.if1 I64Type
begin
IncrementalGraphStabilization.load env ^^
NewStableMemory.upgrade_version_from_graph_stabilization env ^^
EnhancedOrthogonalPersistence.initialize env actor_type
end
begin
use_candid_destabilization env ^^
E.else_trap_with env "Unsupported persistence version. Use newer Motoko compiler version." ^^
OldStabilization.load env actor_type (NewStableMemory.upgrade_version_from_candid env) ^^
EnhancedOrthogonalPersistence.initialize env actor_type
end
end) ^^
StableMem.region_init env
let save env actor_type =
GraphCopyStabilization.is_graph_stabilization_started env ^^
E.if0
(IncrementalGraphStabilization.complete_stabilization_on_upgrade env actor_type)
(EnhancedOrthogonalPersistence.save env actor_type)
end (* Persistence *)
module PatCode = struct
(* Pattern failure code on demand.
Patterns in general can fail, so we want a block around them with a
jump-label for the fail case. But many patterns cannot fail, in particular
function arguments that are simple variables. In these cases, we do not want
to create the block and the (unused) jump label. So we first generate the
code, either as plain code (CannotFail) or as code with hole for code to run
in case of failure (CanFail).
*)
type patternCode =
| CannotFail of G.t
| CanFail of (G.t -> G.t)
let definiteFail = CanFail (fun fail -> fail)
let (^^^) : patternCode -> patternCode -> patternCode = function
| CannotFail is1 ->
begin function
| CannotFail is2 -> CannotFail (is1 ^^ is2)
| CanFail is2 -> CanFail (fun k -> is1 ^^ is2 k)
end
| CanFail is1 ->
begin function
| CannotFail is2 -> CanFail (fun k -> is1 k ^^ is2)
| CanFail is2 -> CanFail (fun k -> is1 k ^^ is2 k)
end
let with_fail (fail_code : G.t) : patternCode -> G.t = function
| CannotFail is -> is
| CanFail is -> is fail_code
let orElse : patternCode -> patternCode -> patternCode = function
| CannotFail is1 -> fun _ -> CannotFail is1
| CanFail is1 -> function
| CanFail is2 -> CanFail (fun fail_code ->
let inner_fail = G.new_depth_label () in
let inner_fail_code = Bool.lit false ^^ G.branch_to_ inner_fail in
G.labeled_block1 I64Type inner_fail (is1 inner_fail_code ^^ Bool.lit true) ^^
E.if0 G.nop (is2 fail_code)
)
| CannotFail is2 -> CannotFail (
let inner_fail = G.new_depth_label () in
let inner_fail_code = Bool.lit false ^^ G.branch_to_ inner_fail in
G.labeled_block1 I64Type inner_fail (is1 inner_fail_code ^^ Bool.lit true) ^^
E.if0 G.nop is2
)
let orElses : patternCode list -> patternCode -> patternCode =
List.fold_right orElse
let patternFailTrap env = E.trap_with env "pattern failed"
let orPatternFailure env pcode =
with_fail (patternFailTrap env) pcode
let orsPatternFailure env pcodes =
orPatternFailure env (orElses pcodes definiteFail)
let with_region at = function
| CannotFail is -> CannotFail (G.with_region at is)
| CanFail is -> CanFail (fun k -> G.with_region at (is k))
end (* PatCode *)
open PatCode
(* All the code above is independent of the IR *)
open Ir
module AllocHow = struct
(*
When compiling a (recursive) block, we need to do a dependency analysis, to
find out how the things are allocated. The options are:
- const: completely known, constant, not stored anywhere (think static function)
(no need to mention in a closure)
- local: only needed locally, stored in a Wasm local, immutable
(can be copied into a closure by value)
- local mutable: only needed locally, stored in a Wasm local, mutable
(cannot be copied into a closure)
- heap allocated: stored on the dynamic heap, address in Wasm local
(can be copied into a closure by reference)
- static heap: stored on the static heap, address known statically
(no need to mention in a closure)
The goal is to avoid dynamic allocation where possible (and use locals), and
to avoid turning function references into closures.
The rules are:
- functions are const, unless they capture something that is not a const
function or a static heap allocation.
in particular, top-level functions are always const
- everything that is captured on the top-level needs to be statically
heap-allocated
- everything that is captured before it is defined, or is captured and mutable
needs to be dynamically heap-allocated
- the rest can be local
*)
module M = Freevars.M
module S = Freevars.S
(*
We represent this as a lattice as follows:
*)
type how = Const | LocalImmut of SR.t | LocalMut of SR.t | StoreHeap | StoreStatic
type allocHow = how M.t
let disjoint_union : allocHow -> allocHow -> allocHow =
M.union (fun v _ _ -> fatal "AllocHow.disjoint_union: %s" v)
let join : allocHow -> allocHow -> allocHow =
M.union (fun _ x y -> Some (match x, y with
| StoreStatic, StoreHeap | StoreHeap, StoreStatic
-> fatal "AllocHow.join: cannot join StoreStatic and StoreHeap"
| _, StoreHeap | StoreHeap, _ -> StoreHeap
| _, StoreStatic | StoreStatic, _ -> StoreStatic
| _, LocalMut sr | LocalMut sr, _ -> LocalMut sr
| _, LocalImmut sr | LocalImmut sr, _ -> LocalImmut sr
| Const, Const -> Const
))
let joins = List.fold_left join M.empty
let map_of_set = Freevars.map_of_set
let set_of_map = Freevars.set_of_map
(* Various filters used in the set operations below *)
let is_local_mut _ = function
| LocalMut _ -> true
| _ -> false
let is_local _ = function
| LocalImmut _ | LocalMut _ -> true
| _ -> false
let how_captured lvl how seen captured =
(* What to do so that we can capture something?
* For local blocks, put on the dynamic heap:
- mutable things
- not yet defined things
* For top-level blocks, put on the static heap:
- everything that is non-static (i.e. still in locals)
*)
match lvl with
| VarEnv.NotTopLvl ->
map_of_set StoreHeap (S.union
(S.inter (set_of_map (M.filter is_local_mut how)) captured)
(S.inter (set_of_map (M.filter is_local how)) (S.diff captured seen))
)
| VarEnv.TopLvl ->
map_of_set StoreStatic
(S.inter (set_of_map (M.filter is_local how)) captured)
(* A bit like StackRep.of_type, but only for those types and stackreps that
we support in local variables *)
let stackrep_of_type t =
let open Type in
match normalize t with
| Prim ((Nat64 | Int64 | Nat32 | Int32 | Nat16 | Int16 | Nat8 | Int8 | Char) as pty) ->
SR.UnboxedWord64 pty
| Prim Float -> SR.UnboxedFloat64
| _ -> SR.Vanilla
let dec lvl how_outer (seen, how0) dec =
let how_all = disjoint_union how_outer how0 in
let (f,d) = Freevars.dec dec in
let captured = S.inter (set_of_map how0) (Freevars.captured_vars f) in
(* Which allocation is required for the things defined here? *)
let how1 = match dec.it with
(* Mutable variables are, well, mutable *)
| VarD _ ->
M.map (fun t -> LocalMut (stackrep_of_type t)) d
(* Constant expressions (trusting static_vals.ml) *)
| LetD (_, e) when e.note.Note.const ->
M.map (fun _ -> (Const : how)) d
(* References to mutboxes *)
| RefD _ ->
M.map (fun _ -> StoreHeap) d
(* Everything else needs at least a local *)
| _ ->
M.map (fun t -> LocalImmut (stackrep_of_type t)) d in
(* Which allocation does this require for its captured things? *)
let how2 = how_captured lvl how_all seen captured in
let how = joins [how0; how1; how2] in
let seen' = S.union seen (set_of_map d)
in (seen', how)
(* find the allocHow for the variables currently in scope *)
(* we assume things are mutable, as we do not know better here *)
let how_of_ae ae : allocHow =
M.map (fun (l, _) -> match l with
| VarEnv.Const _ -> (Const : how)
| VarEnv.Static _ -> StoreStatic
| VarEnv.HeapInd _ -> StoreHeap
| VarEnv.Local (sr, _) -> LocalMut sr (* conservatively assume mutable *)
| VarEnv.PublicMethod _ -> LocalMut SR.Vanilla
) ae.VarEnv.vars
let decs (ae : VarEnv.t) decs captured_in_body : allocHow =
let lvl = ae.VarEnv.lvl in
let how_outer = how_of_ae ae in
let defined_here = snd (Freevars.decs decs) in (* TODO: implement gather_decs more directly *)
let how_outer = Freevars.diff how_outer defined_here in (* shadowing *)
let how0 = M.map (fun _t -> (Const : how)) defined_here in
let captured = S.inter (set_of_map defined_here) captured_in_body in
let rec go how =
let seen, how1 = List.fold_left (dec lvl how_outer) (S.empty, how) decs in
assert (S.equal seen (set_of_map defined_here));
let how2 = how_captured lvl how1 seen captured in
let how' = join how1 how2 in
if M.equal (=) how how' then how' else go how' in
go how0
(* Functions to extend the environment (and possibly allocate memory)
based on how we want to store them. *)
let add_local env ae how name typ : VarEnv.t * G.t =
match M.find name how with
| (Const : how) -> (ae, G.nop)
| LocalImmut sr | LocalMut sr ->
let ae1, _ = VarEnv.add_direct_local env ae name sr typ in
(ae1, G.nop)
| StoreHeap ->
let ae1, i = VarEnv.add_local_with_heap_ind env ae name typ in
let alloc_code = MutBox.alloc env ^^ G.i (LocalSet (nr i)) in
(ae1, alloc_code)
| StoreStatic ->
let index = MutBox.add_global_mutbox env in
let ae1 = VarEnv.add_static_variable ae name index typ in
(ae1, G.nop)
let add_local_for_alias env ae how name typ : VarEnv.t * G.t =
match M.find name how with
| StoreHeap ->
let ae1, _ = VarEnv.add_local_with_heap_ind env ae name typ in
ae1, G.nop
| _ -> assert false
end (* AllocHow *)
(* The actual compiler code that looks at the AST *)
(* wraps a bigint in range [0…2^64-1] into range [-2^63…2^63-1] *)
let nat64_to_int64 n =
let open Big_int in
if ge_big_int n (power_int_positive_int 2 63)
then sub_big_int n (power_int_positive_int 2 64)
else n
let const_lit_of_lit : Ir.lit -> Const.lit = function
| BoolLit b -> Const.Bool b
| IntLit n
| NatLit n -> Const.BigInt (Numerics.Nat.to_big_int n)
| Int8Lit n -> Const.Vanilla (TaggedSmallWord.vanilla_lit Type.Int8 (Numerics.Int_8.to_int n))
| Nat8Lit n -> Const.Vanilla (TaggedSmallWord.vanilla_lit Type.Nat8 (Numerics.Nat8.to_int n))
| Int16Lit n -> Const.Vanilla (TaggedSmallWord.vanilla_lit Type.Int16 (Numerics.Int_16.to_int n))
| Nat16Lit n -> Const.Vanilla (TaggedSmallWord.vanilla_lit Type.Nat16 (Numerics.Nat16.to_int n))
| Int32Lit n -> Const.Vanilla (TaggedSmallWord.vanilla_lit Type.Int32 (Numerics.Int_32.to_int n))
| Nat32Lit n -> Const.Vanilla (TaggedSmallWord.vanilla_lit Type.Nat32 (Numerics.Nat32.to_int n))
| Int64Lit n -> Const.Word64 (Type.Int64, (Big_int.int64_of_big_int (Numerics.Int_64.to_big_int n)))
| Nat64Lit n -> Const.Word64 (Type.Nat64, (Big_int.int64_of_big_int (nat64_to_int64 (Numerics.Nat64.to_big_int n))))
| CharLit c -> Const.Vanilla (TaggedSmallWord.vanilla_lit Type.Char c)
| NullLit -> Const.Null
| TextLit t -> Const.Text t
| BlobLit t -> Const.Blob t
| FloatLit f -> Const.Float64 f
let const_of_lit lit =
Const.Lit (const_lit_of_lit lit)
let compile_lit lit =
SR.Const (const_of_lit lit), G.nop
let compile_lit_as env sr_out lit =
let sr_in, code = compile_lit lit in
code ^^ StackRep.adjust env sr_in sr_out
(* helper, traps with message *)
let then_arithmetic_overflow env =
E.then_trap_with env "arithmetic overflow"
(* The first returned StackRep is for the arguments (expected), the second for the results (produced) *)
let compile_unop env t op =
let open Operator in
match op, t with
| _, Type.Non ->
SR.Vanilla, SR.Unreachable, G.i Unreachable
| NegOp, Type.(Prim Int) ->
SR.Vanilla, SR.Vanilla,
BigNum.compile_neg env
| NegOp, Type.(Prim ((Int8 | Int16 | Int32 | Int64) as p)) ->
StackRep.of_type t, StackRep.of_type t,
Func.share_code1 Func.Never env (prim_fun_name p "neg_trap") ("n", I64Type) [I64Type] (fun env get_n ->
get_n ^^
compile_eq_const 0x8000_0000_0000_0000L ^^
then_arithmetic_overflow env ^^
compile_unboxed_zero ^^
get_n ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Sub))
)
| NegOp, Type.(Prim Float) ->
SR.UnboxedFloat64, SR.UnboxedFloat64,
G.i (Unary (Wasm_exts.Values.F64 F64Op.Neg))
| NotOp, Type.(Prim (Nat64|Int64 as p)) ->
SR.UnboxedWord64 p, SR.UnboxedWord64 p,
compile_xor_const (-1L)
| NotOp, Type.(Prim (Nat8|Nat16|Nat32|Int8|Int16|Int32 as ty)) ->
StackRep.of_type t, StackRep.of_type t,
compile_unboxed_const (TaggedSmallWord.mask_of_type ty) ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Xor))
| _ ->
todo "compile_unop"
(Wasm.Sexpr.Node ("BinOp", [ Arrange_ops.unop op ]))
(SR.Vanilla, SR.Unreachable, E.trap_with env "TODO: compile_unop")
(* Logarithmic helpers for deciding whether we can carry out operations in constant bitwidth *)
(* helper, traps with message *)
let else_arithmetic_overflow env =
E.else_trap_with env "arithmetic overflow"
(* helpers to decide if Int64 arithmetic can be carried out on the fast path *)
let additiveInt64_shortcut fast env get_a get_b slow =
get_a ^^ get_a ^^ compile_shl_const 1L ^^ G.i (Binary (Wasm_exts.Values.I64 I64Op.Xor)) ^^ compile_shrU_const 63L ^^
get_b ^^ get_b ^^ compile_shl_const 1L ^^ G.i (Binary (Wasm_exts.Values.I64 I64Op.Xor)) ^^ compile_shrU_const 63L ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Or)) ^^
compile_test I64Op.Eqz ^^
E.if1 I64Type
(get_a ^^ get_b ^^ fast)
slow
let mulInt64_shortcut fast env get_a get_b slow =
get_a ^^ get_a ^^ compile_shl_const 1L ^^ G.i (Binary (Wasm_exts.Values.I64 I64Op.Xor)) ^^ G.i (Unary (Wasm_exts.Values.I64 I64Op.Clz)) ^^
get_b ^^ get_b ^^ compile_shl_const 1L ^^ G.i (Binary (Wasm_exts.Values.I64 I64Op.Xor)) ^^ G.i (Unary (Wasm_exts.Values.I64 I64Op.Clz)) ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Add)) ^^
compile_unboxed_const 65L ^^ compile_comparison I64Op.GeU ^^
E.if1 I64Type
(get_a ^^ get_b ^^ fast)
slow
let powInt64_shortcut fast env get_a get_b slow =
get_b ^^ compile_test I64Op.Eqz ^^
E.if1 I64Type
(compile_unboxed_const 1L) (* ^0 *)
begin (* ^(1+n) *)
get_a ^^ compile_unboxed_const (-1L) ^^ compile_comparison I64Op.Eq ^^
E.if1 I64Type
begin (* -1 ** (1+exp) == if even (1+exp) then 1 else -1 *)
get_b ^^ compile_unboxed_const 1L ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.And)) ^^ compile_test I64Op.Eqz ^^
E.if1 I64Type
(compile_unboxed_const 1L)
get_a
end
begin
get_a ^^ compile_shrS_const 1L ^^
compile_test I64Op.Eqz ^^
E.if1 I64Type
get_a (* {0,1}^(1+n) *)
begin
get_b ^^ compile_unboxed_const 64L ^^
compile_comparison I64Op.GeU ^^ then_arithmetic_overflow env ^^
get_a ^^ get_a ^^ compile_shl_const 1L ^^ G.i (Binary (Wasm_exts.Values.I64 I64Op.Xor)) ^^
G.i (Unary (Wasm_exts.Values.I64 I64Op.Clz)) ^^ compile_sub_const 63L ^^
get_b ^^ G.i (Binary (Wasm_exts.Values.I64 I64Op.Mul)) ^^
compile_unboxed_const (-63L) ^^ compile_comparison I64Op.GeS ^^
E.if1 I64Type
(get_a ^^ get_b ^^ fast)
slow
end
end
end
(* kernel for Int64 arithmetic, invokes estimator for fast path *)
let compile_Int64_kernel env name op shortcut =
Func.share_code2 Func.Always env (prim_fun_name Type.Int64 name)
(("a", I64Type), ("b", I64Type)) [I64Type]
BigNum.(fun env get_a get_b ->
shortcut
env
get_a
get_b
begin
let (set_res, get_res) = new_local env "res" in
get_a ^^ from_signed_word64 env ^^
get_b ^^ from_signed_word64 env ^^
op env ^^
set_res ^^ get_res ^^
fits_signed_bits env 64 ^^
else_arithmetic_overflow env ^^
get_res ^^ truncate_to_word64 env
end)
(* helpers to decide if Nat64 arithmetic can be carried out on the fast path *)
let additiveNat64_shortcut fast env get_a get_b slow =
get_a ^^ compile_shrU_const 62L ^^
get_b ^^ compile_shrU_const 62L ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Or)) ^^
compile_test I64Op.Eqz ^^
E.if1 I64Type
(get_a ^^ get_b ^^ fast)
slow
let mulNat64_shortcut fast env get_a get_b slow =
get_a ^^ G.i (Unary (Wasm_exts.Values.I64 I64Op.Clz)) ^^
get_b ^^ G.i (Unary (Wasm_exts.Values.I64 I64Op.Clz)) ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Add)) ^^
compile_unboxed_const 64L ^^ compile_comparison I64Op.GeU ^^
E.if1 I64Type
(get_a ^^ get_b ^^ fast)
slow
let powNat64_shortcut fast env get_a get_b slow =
get_b ^^ compile_test I64Op.Eqz ^^
E.if1 I64Type
(compile_unboxed_const 1L) (* ^0 *)
begin (* ^(1+n) *)
get_a ^^ compile_shrU_const 1L ^^
compile_test I64Op.Eqz ^^
E.if1 I64Type
get_a (* {0,1}^(1+n) *)
begin
get_b ^^ compile_unboxed_const 64L ^^ compile_comparison I64Op.GeU ^^ then_arithmetic_overflow env ^^
get_a ^^ G.i (Unary (Wasm_exts.Values.I64 I64Op.Clz)) ^^ compile_sub_const 64L ^^
get_b ^^ G.i (Binary (Wasm_exts.Values.I64 I64Op.Mul)) ^^ compile_unboxed_const (-64L) ^^ compile_comparison I64Op.GeS ^^
E.if1 I64Type
(get_a ^^ get_b ^^ fast)
slow
end
end
(* kernel for Nat64 arithmetic, invokes estimator for fast path *)
let compile_Nat64_kernel env name op shortcut =
Func.share_code2 Func.Always env (prim_fun_name Type.Nat64 name)
(("a", I64Type), ("b", I64Type)) [I64Type]
BigNum.(fun env get_a get_b ->
shortcut
env
get_a
get_b
begin
let (set_res, get_res) = new_local env "res" in
get_a ^^ from_word64 env ^^
get_b ^^ from_word64 env ^^
op env ^^
set_res ^^ get_res ^^
fits_unsigned_bits env 64 ^^
else_arithmetic_overflow env ^^
get_res ^^ truncate_to_word64 env
end)
(* Compiling Int/Nat32 ops by conversion to/from i64. *)
(* helper, expects i64 on stack *)
let enforce_32_unsigned_bits env =
compile_bitand_const 0xFFFF_FFFF_0000_0000L ^^
compile_test I64Op.Eqz ^^
else_arithmetic_overflow env
(* helper, expects two identical i64s on stack *)
let enforce_32_signed_bits env =
compile_shl_const 1L ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Xor)) ^^
enforce_32_unsigned_bits env
(* TODO: Combine this with `compile_smallInt_kernel`, to support `Int32`, `Int16`, and `Int8` at once. *)
let compile_Int32_kernel env name op =
Func.share_code2 Func.Always env (prim_fun_name Type.Int32 name)
(("a", I64Type), ("b", I64Type)) [I64Type]
(fun env get_a get_b ->
let (set_res, get_res) = new_local env "res" in
get_a ^^ compile_shrS_const 32L ^^
get_b ^^ compile_shrS_const 32L ^^
G.i (Binary (Wasm_exts.Values.I64 op)) ^^
set_res ^^ get_res ^^ get_res ^^
enforce_32_signed_bits env ^^
get_res ^^ compile_shl_const 32L)
(* TODO: Combine this with `compile_smallInt_kernel`, to support `Nat32`, `Nat16`, and `Nat8` at once. *)
let compile_Nat32_kernel env name op =
Func.share_code2 Func.Always env (prim_fun_name Type.Nat32 name)
(("a", I64Type), ("b", I64Type)) [I64Type]
(fun env get_a get_b ->
let (set_res, get_res) = new_local env "res" in
get_a ^^ compile_shrU_const 32L ^^
get_b ^^ compile_shrU_const 32L ^^
G.i (Binary (Wasm_exts.Values.I64 op)) ^^
set_res ^^ get_res ^^
enforce_32_unsigned_bits env ^^
get_res ^^ compile_shl_const 32L)
(* Customisable kernels for 8/16bit arithmetic via 64 bits. *)
(* TODO: Include the support for 32bit which is now also compact on 64-bit.
Eventually, `compile_Int32_kernel` and `compile_Nat32_kernel` can be removed. *)
(* helper, expects i64 on stack *)
let enforce_unsigned_bits env n =
compile_bitand_const Int64.(shift_left minus_one n) ^^
compile_test I64Op.Eqz ^^
else_arithmetic_overflow env
let enforce_16_unsigned_bits env = enforce_unsigned_bits env 16
(* helper, expects two identical i64s on stack *)
let enforce_signed_bits env n =
compile_shl_const 1L ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Xor)) ^^
enforce_unsigned_bits env n
let enforce_16_signed_bits env = enforce_signed_bits env 16
let compile_smallInt_kernel' env ty name op =
Func.share_code2 Func.Always env (prim_fun_name ty name)
(("a", I64Type), ("b", I64Type)) [I64Type]
(fun env get_a get_b ->
let (set_res, get_res) = new_local env "res" in
get_a ^^ compile_shrS_const 48L ^^
get_b ^^ compile_shrS_const 48L ^^
op ^^
set_res ^^ get_res ^^ get_res ^^
enforce_16_signed_bits env ^^
get_res ^^ compile_shl_const 48L)
let compile_smallInt_kernel env ty name op =
compile_smallInt_kernel' env ty name (G.i (Binary (Wasm_exts.Values.I64 op)))
let compile_smallNat_kernel' env ty name op =
Func.share_code2 Func.Always env (prim_fun_name ty name)
(("a", I64Type), ("b", I64Type)) [I64Type]
(fun env get_a get_b ->
let (set_res, get_res) = new_local env "res" in
get_a ^^ compile_shrU_const 48L ^^
get_b ^^ compile_shrU_const 48L ^^
op ^^
set_res ^^ get_res ^^
enforce_16_unsigned_bits env ^^
get_res ^^ compile_shl_const 48L)
let compile_smallNat_kernel env ty name op =
compile_smallNat_kernel' env ty name (G.i (Binary (Wasm_exts.Values.I64 op)))
(* The first returned StackRep is for the arguments (expected), the second for the results (produced) *)
let compile_binop env t op : SR.t * SR.t * G.t =
if t = Type.Non then SR.Vanilla, SR.Unreachable, G.i Unreachable else
StackRep.of_type t,
StackRep.of_type t,
Operator.(match t, op with
| Type.(Prim (Nat | Int)), AddOp -> BigNum.compile_add env
| Type.(Prim (Nat64|Int64)), WAddOp -> G.i (Binary (Wasm_exts.Values.I64 I64Op.Add))
| Type.(Prim Int64), AddOp ->
compile_Int64_kernel env "add" BigNum.compile_add
(additiveInt64_shortcut (G.i (Binary (Wasm_exts.Values.I64 I64Op.Add))))
| Type.(Prim Nat64), AddOp ->
compile_Nat64_kernel env "add" BigNum.compile_add
(additiveNat64_shortcut (G.i (Binary (Wasm_exts.Values.I64 I64Op.Add))))
| Type.(Prim Nat), SubOp -> BigNum.compile_unsigned_sub env
| Type.(Prim Int), SubOp -> BigNum.compile_signed_sub env
| Type.(Prim (Nat | Int)), MulOp -> BigNum.compile_mul env
| Type.(Prim (Nat64|Int64)), WMulOp -> G.i (Binary (Wasm_exts.Values.I64 I64Op.Mul))
| Type.(Prim Int64), MulOp ->
compile_Int64_kernel env "mul" BigNum.compile_mul
(mulInt64_shortcut (G.i (Binary (Wasm_exts.Values.I64 I64Op.Mul))))
| Type.(Prim Nat64), MulOp ->
compile_Nat64_kernel env "mul" BigNum.compile_mul
(mulNat64_shortcut (G.i (Binary (Wasm_exts.Values.I64 I64Op.Mul))))
| Type.(Prim Nat64), DivOp -> G.i (Binary (Wasm_exts.Values.I64 I64Op.DivU))
| Type.(Prim Nat64) , ModOp -> G.i (Binary (Wasm_exts.Values.I64 I64Op.RemU))
| Type.(Prim Int64), DivOp -> G.i (Binary (Wasm_exts.Values.I64 I64Op.DivS))
| Type.(Prim Int64) , ModOp -> G.i (Binary (Wasm_exts.Values.I64 I64Op.RemS))
| Type.(Prim Nat), DivOp -> BigNum.compile_unsigned_div env
| Type.(Prim Nat), ModOp -> BigNum.compile_unsigned_rem env
| Type.(Prim (Nat64|Int64)), WSubOp -> G.i (Binary (Wasm_exts.Values.I64 I64Op.Sub))
| Type.(Prim Int64), SubOp ->
compile_Int64_kernel env "sub" BigNum.compile_signed_sub
(additiveInt64_shortcut (G.i (Binary (Wasm_exts.Values.I64 I64Op.Sub))))
| Type.(Prim Nat64), SubOp ->
compile_Nat64_kernel env "sub" BigNum.compile_unsigned_sub
(fun env get_a get_b ->
additiveNat64_shortcut
(compile_comparison I64Op.GeU ^^
else_arithmetic_overflow env ^^
get_a ^^ get_b ^^ G.i (Binary (Wasm_exts.Values.I64 I64Op.Sub)))
env get_a get_b)
| Type.(Prim Int), DivOp -> BigNum.compile_signed_div env
| Type.(Prim Int), ModOp -> BigNum.compile_signed_mod env
| Type.Prim Type.(Nat8|Nat16|Nat32|Int8|Int16|Int32),
WAddOp -> G.i (Binary (Wasm_exts.Values.I64 I64Op.Add))
| Type.(Prim Int32), AddOp -> compile_Int32_kernel env "add" I64Op.Add
| Type.Prim Type.(Int8 | Int16 as ty), AddOp -> compile_smallInt_kernel env ty "add" I64Op.Add
| Type.(Prim Nat32), AddOp -> compile_Nat32_kernel env "add" I64Op.Add
| Type.Prim Type.(Nat8 | Nat16 as ty), AddOp -> compile_smallNat_kernel env ty "add" I64Op.Add
| Type.(Prim Float), AddOp -> G.i (Binary (Wasm_exts.Values.F64 F64Op.Add))
| Type.Prim Type.(Nat8|Nat16|Nat32|Int8|Int16|Int32),
WSubOp -> G.i (Binary (Wasm_exts.Values.I64 I64Op.Sub))
| Type.(Prim Int32), SubOp -> compile_Int32_kernel env "sub" I64Op.Sub
| Type.(Prim (Int8|Int16 as ty)), SubOp -> compile_smallInt_kernel env ty "sub" I64Op.Sub
| Type.(Prim Nat32), SubOp -> compile_Nat32_kernel env "sub" I64Op.Sub
| Type.(Prim (Nat8|Nat16 as ty)), SubOp -> compile_smallNat_kernel env ty "sub" I64Op.Sub
| Type.(Prim Float), SubOp -> G.i (Binary (Wasm_exts.Values.F64 F64Op.Sub))
| Type.Prim Type.(Nat8|Nat16|Nat32|Int8|Int16|Int32 as ty),
WMulOp -> TaggedSmallWord.compile_word_mul env ty
| Type.(Prim Int32), MulOp -> compile_Int32_kernel env "mul" I64Op.Mul
| Type.(Prim Int16), MulOp -> compile_smallInt_kernel env Type.Int16 "mul" I64Op.Mul
| Type.(Prim Int8), MulOp -> compile_smallInt_kernel' env Type.Int8 "mul"
(compile_shrS_const 8L ^^ G.i (Binary (Wasm_exts.Values.I64 I64Op.Mul)))
| Type.(Prim Nat32), MulOp -> compile_Nat32_kernel env "mul" I64Op.Mul
| Type.(Prim Nat16), MulOp -> compile_smallNat_kernel env Type.Nat16 "mul" I64Op.Mul
| Type.(Prim Nat8), MulOp -> compile_smallNat_kernel' env Type.Nat8 "mul"
(compile_shrU_const 8L ^^ G.i (Binary (Wasm_exts.Values.I64 I64Op.Mul)))
| Type.(Prim Float), MulOp -> G.i (Binary (Wasm_exts.Values.F64 F64Op.Mul))
| Type.(Prim (Nat8|Nat16|Nat32 as ty)), DivOp -> G.i (Binary (Wasm_exts.Values.I64 I64Op.DivU)) ^^
TaggedSmallWord.msb_adjust ty
| Type.(Prim (Nat8|Nat16|Nat32)), ModOp -> G.i (Binary (Wasm_exts.Values.I64 I64Op.RemU))
| Type.(Prim (Int8|Int16|Int32 as ty)), DivOp ->
Func.share_code2 Func.Always env (prim_fun_name ty "div")
(("a", I64Type), ("b", I64Type)) [I64Type]
(fun env get_a get_b ->
let (set_res, get_res) = new_local env "res" in
get_a ^^ get_b ^^ G.i (Binary (Wasm_exts.Values.I64 I64Op.DivS)) ^^
TaggedSmallWord.msb_adjust ty ^^ set_res ^^
get_a ^^ compile_eq_const 0x8000_0000_0000_0000L ^^
E.if_ env [I64Type]
begin
get_b ^^ TaggedSmallWord.lsb_adjust ty ^^ compile_eq_const (-1L) ^^
E.if_ env [I64Type]
(G.i Unreachable)
get_res
end
get_res)
| Type.(Prim Float), DivOp -> G.i (Binary (Wasm_exts.Values.F64 F64Op.Div))
| Type.(Prim Float), ModOp -> E.call_import env "rts" "fmod"
| Type.(Prim (Int8|Int16|Int32)), ModOp -> G.i (Binary (Wasm_exts.Values.I64 I64Op.RemS))
| Type.(Prim (Nat8|Nat16|Nat32 as ty)), WPowOp -> TaggedSmallWord.compile_nat_power env ty
| Type.(Prim (Int8|Int16|Int32 as ty)), WPowOp -> TaggedSmallWord.compile_int_power env ty
| Type.(Prim ((Nat8|Nat16|Nat32) as ty)), PowOp ->
Func.share_code2 Func.Always env (prim_fun_name ty "pow")
(("n", I64Type), ("exp", I64Type)) [I64Type]
(fun env get_n get_exp ->
let (set_res, get_res) = new_local env "res" in
let bits = TaggedSmallWord.bits_of_type ty in
let set_n = G.setter_for get_n in
let set_exp = G.setter_for get_exp in
get_n ^^ TaggedSmallWord.lsb_adjust ty ^^ set_n ^^
get_exp ^^ TaggedSmallWord.lsb_adjust ty ^^ set_exp ^^
get_exp ^^ Bool.from_int64 ^^
E.if1 I64Type
begin
get_n ^^ compile_shrU_const 1L ^^
Bool.from_int64 ^^
E.if1 I64Type
begin
let overflow_type = match ty with
| Type.Nat32 -> Type.Nat64
| Type.(Nat8 | Nat16) -> Type.Nat32
| _ -> assert false in
let overflow_type_bits = TaggedSmallWord.bits_of_type overflow_type in
let overflow_boundary = -Int.(sub (mul overflow_type_bits 2) 2) in
get_exp ^^ compile_unboxed_const 64L ^^
compile_comparison I64Op.GeU ^^ then_arithmetic_overflow env ^^
unsigned_dynamics get_n ^^ compile_sub_const (Int64.of_int bits) ^^
get_exp ^^ G.i (Binary (Wasm_exts.Values.I64 I64Op.Mul)) ^^
compile_unboxed_const (Int64.of_int overflow_boundary) ^^
compile_comparison I64Op.LtS ^^ then_arithmetic_overflow env ^^
get_n ^^ get_exp ^^
TaggedSmallWord.compile_nat_power env Type.Nat64 ^^ set_res ^^
get_res ^^ enforce_unsigned_bits env bits ^^
get_res ^^ TaggedSmallWord.msb_adjust ty
end
(get_n ^^ TaggedSmallWord.msb_adjust ty) (* n@{0,1} ** (1+exp) == n *)
end
(compile_unboxed_one ^^ TaggedSmallWord.msb_adjust ty)) (* x ** 0 == 1 *)
| Type.(Prim ((Int8|Int16|Int32) as ty)), PowOp ->
Func.share_code2 Func.Always env (prim_fun_name ty "pow")
(("n", I64Type), ("exp", I64Type)) [I64Type]
(fun env get_n get_exp ->
let (set_res, get_res) = new_local env "res" in
let bits = TaggedSmallWord.bits_of_type ty in
let set_n = G.setter_for get_n in
let set_exp = G.setter_for get_exp in
get_n ^^ TaggedSmallWord.lsb_adjust ty ^^ set_n ^^
get_exp ^^ TaggedSmallWord.lsb_adjust ty ^^ set_exp ^^
get_exp ^^ compile_unboxed_zero ^^
compile_comparison I64Op.LtS ^^ E.then_trap_with env "negative power" ^^
get_exp ^^ Bool.from_int64 ^^
E.if1 I64Type
begin
get_n ^^ compile_unboxed_one ^^ compile_comparison I64Op.LeS ^^
get_n ^^ compile_unboxed_const (-1L) ^^ compile_comparison I64Op.GeS ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.And)) ^^
E.if1 I64Type
begin
get_n ^^ compile_unboxed_zero ^^ compile_comparison I64Op.LtS ^^
E.if1 I64Type
begin
(* -1 ** (1+exp) == if even (1+exp) then 1 else -1 *)
get_exp ^^ compile_unboxed_one ^^ G.i (Binary (Wasm_exts.Values.I64 I64Op.And)) ^^
E.if1 I64Type
(get_n ^^ TaggedSmallWord.msb_adjust ty)
(compile_unboxed_const
Int64.(shift_left one (to_int (TaggedSmallWord.shift_of_type ty))))
end
(get_n ^^ TaggedSmallWord.msb_adjust ty) (* n@{0,1} ** (1+exp) == n *)
end
begin
let overflow_type = match ty with
| Type.Int32 -> Type.Int64
| Type.(Int8 | Int16) -> Type.Int32
| _ -> assert false in
let overflow_type_bits = TaggedSmallWord.bits_of_type overflow_type in
let overflow_boundary = -Int.(sub (mul overflow_type_bits 2) 2) in
get_exp ^^ compile_unboxed_const 64L ^^
compile_comparison I64Op.GeU ^^ then_arithmetic_overflow env ^^
signed_dynamics get_n ^^ compile_sub_const (Int64.of_int (Int.sub bits 1)) ^^
get_exp ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Mul)) ^^
compile_unboxed_const (Int64.of_int overflow_boundary) ^^
compile_comparison I64Op.LtS ^^ then_arithmetic_overflow env ^^
get_n ^^ get_exp ^^
TaggedSmallWord.compile_nat_power env Type.Nat64 ^^ set_res ^^
get_res ^^ get_res ^^ enforce_signed_bits env bits ^^
get_res ^^ TaggedSmallWord.msb_adjust ty
end
end
(compile_unboxed_one ^^ TaggedSmallWord.msb_adjust ty)) (* x ** 0 == 1 *)
| Type.(Prim Int), PowOp ->
let pow = BigNum.compile_unsigned_pow env in
let (set_n, get_n) = new_local env "n" in
let (set_exp, get_exp) = new_local env "exp" in
set_exp ^^ set_n ^^
get_exp ^^ BigNum.compile_is_negative env ^^
E.then_trap_with env "negative power" ^^
get_n ^^ get_exp ^^ pow
| Type.(Prim Nat64), WPowOp -> Word64.compile_unsigned_pow env
| Type.(Prim Int64), WPowOp -> Word64.compile_signed_wpow env
| Type.(Prim Nat64), PowOp ->
compile_Nat64_kernel env "pow"
BigNum.compile_unsigned_pow
(powNat64_shortcut (Word64.compile_unsigned_pow env))
| Type.(Prim Int64), PowOp ->
let (set_exp, get_exp) = new_local env "exp" in
set_exp ^^ get_exp ^^
compile_unboxed_const 0L ^^
compile_comparison I64Op.LtS ^^
E.then_trap_with env "negative power" ^^
get_exp ^^
compile_Int64_kernel
env "pow" BigNum.compile_unsigned_pow
(powInt64_shortcut (Word64.compile_unsigned_pow env))
| Type.(Prim Nat), PowOp -> BigNum.compile_unsigned_pow env
| Type.(Prim Float), PowOp -> E.call_import env "rts" "pow"
| Type.(Prim (Nat8|Nat16|Nat32|Nat64|Int8|Int16|Int32|Int64)),
AndOp -> G.i (Binary (Wasm_exts.Values.I64 I64Op.And))
| Type.(Prim (Nat8|Nat16|Nat32|Nat64|Int8|Int16|Int32|Int64)),
OrOp -> G.i (Binary (Wasm_exts.Values.I64 I64Op.Or))
| Type.(Prim (Nat8|Nat16|Nat32|Nat64|Int8|Int16|Int32|Int64)),
XorOp -> G.i (Binary (Wasm_exts.Values.I64 I64Op.Xor))
| Type.(Prim (Nat64|Int64)), ShLOp -> G.i (Binary (Wasm_exts.Values.I64 I64Op.Shl))
| Type.(Prim (Nat8|Nat16|Nat32|Int8|Int16|Int32 as ty)),
ShLOp -> TaggedSmallWord.(
lsb_adjust ty ^^ clamp_shift_amount ty ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.Shl)))
| Type.(Prim Nat64), ShROp -> G.i (Binary (Wasm_exts.Values.I64 I64Op.ShrU))
| Type.(Prim (Nat8|Nat16|Nat32 as ty)), ShROp -> TaggedSmallWord.(
lsb_adjust ty ^^ clamp_shift_amount ty ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.ShrU)) ^^
sanitize_word_result ty)
| Type.(Prim Int64), ShROp -> G.i (Binary (Wasm_exts.Values.I64 I64Op.ShrS))
| Type.(Prim (Int8|Int16|Int32 as ty)), ShROp -> TaggedSmallWord.(
lsb_adjust ty ^^ clamp_shift_amount ty ^^
G.i (Binary (Wasm_exts.Values.I64 I64Op.ShrS)) ^^
sanitize_word_result ty)
| Type.(Prim (Nat64|Int64)), RotLOp -> G.i (Binary (Wasm_exts.Values.I64 I64Op.Rotl))
| Type.(Prim (Nat8|Nat16|Nat32|Int8|Int16|Int32 as ty)),
RotLOp -> TaggedSmallWord.rotl env ty
| Type.(Prim (Nat64|Int64)), RotROp -> G.i (Binary (Wasm_exts.Values.I64 I64Op.Rotr))
| Type.(Prim (Nat8|Nat16|Nat32|Int8|Int16|Int32 as ty)),
RotROp -> TaggedSmallWord.rotr env ty
| Type.(Prim Text), CatOp -> Text.concat env
| Type.Non, _ -> G.i Unreachable
| _ -> todo_trap env "compile_binop" (Wasm.Sexpr.Node ("BinOp", [ Arrange_ops.binop op; Arrange_type.typ t]))
)
let compile_eq env =
let open Type in
function
| Prim Text -> Text.compare env Operator.EqOp
| Prim (Blob|Principal) | Obj (Actor, _) -> Blob.compare env (Some Operator.EqOp)
| Func (Shared _, _, _, _, _) -> FuncDec.equate_msgref env
| Prim (Nat | Int) -> BigNum.compile_eq env
| Prim (Bool | Int8 | Nat8 | Int16 | Nat16 | Int32 | Nat32 | Int64 | Nat64 | Char) ->
compile_comparison I64Op.Eq
| Non -> G.i Unreachable
| Prim Float -> compile_comparison_f64 F64Op.Eq
| t -> todo_trap env "compile_eq" (Arrange_type.typ t)
let get_relops = Operator.(function
| GeOp -> Ge, I64Op.GeU, I64Op.GeS
| GtOp -> Gt, I64Op.GtU, I64Op.GtS
| LeOp -> Le, I64Op.LeU, I64Op.LeS
| LtOp -> Lt, I64Op.LtU, I64Op.LtS
| NeqOp -> assert false
| _ -> failwith "uncovered relop")
let compile_comparison_op env t op =
let bigintop, u64op, s64op = get_relops op in
let open Type in
match t with
| Nat | Int -> BigNum.compile_relop env bigintop
| Nat8 | Nat16 | Nat32 | Nat64 | Char -> compile_comparison u64op
| Int8 | Int16 | Int32 | Int64 -> compile_comparison s64op
| _ -> todo_trap env "compile_comparison" (Arrange_type.prim t)
let compile_relop env t op =
if t = Type.Non then SR.Vanilla, G.i Unreachable else
StackRep.of_type t,
let open Operator in
match t, op with
| Type.(Prim Text), _ -> Text.compare env op
| Type.(Prim (Blob|Principal)), _ -> Blob.compare env (Some op)
| _, EqOp -> compile_eq env t
| Type.(Prim (Nat | Nat8 | Nat16 | Nat32 | Nat64 | Int | Int8 | Int16 | Int32 | Int64 | Char as t1)), op1 ->
compile_comparison_op env t1 op1
| Type.(Prim Float), GtOp -> compile_comparison_f64 F64Op.Gt
| Type.(Prim Float), GeOp -> compile_comparison_f64 F64Op.Ge
| Type.(Prim Float), LeOp -> compile_comparison_f64 F64Op.Le
| Type.(Prim Float), LtOp -> compile_comparison_f64 F64Op.Lt
| _ -> todo_trap env "compile_relop" (Arrange_ops.relop op)
let compile_load_field env typ name =
Object.load_idx env typ name
(* compile_lexp is used for expressions on the left of an assignment operator.
Produces
* preparation code, to run first
* an expected stack rep
* code that expects the value to be written in that stackrep, and consumes it
*)
let rec compile_lexp (env : E.t) ae lexp : G.t * SR.t * G.t =
(fun (code, sr, fill_code) -> G.(with_region lexp.at code, sr, with_region lexp.at fill_code)) @@
match lexp.it with
| VarLE var -> Var.set_val env ae var
| IdxLE (e1, e2) when potential_pointer (Arr.element_type env e1.note.Note.typ) ->
compile_array_index env ae e1 e2 ^^
compile_add_const ptr_unskew,
SR.Vanilla,
Tagged.write_with_barrier env
| IdxLE (e1, e2) ->
compile_array_index env ae e1 e2,
SR.Vanilla,
store_ptr
| DotLE (e, n) when potential_pointer (Object.field_type env e.note.Note.typ n) ->
compile_exp_vanilla env ae e ^^
(* Only real objects have mutable fields, no need to branch on the tag *)
Object.idx env e.note.Note.typ n ^^
compile_add_const ptr_unskew,
SR.Vanilla,
Tagged.write_with_barrier env
| DotLE (e, n) ->
compile_exp_vanilla env ae e ^^
(* Only real objects have mutable fields, no need to branch on the tag *)
Object.idx env e.note.Note.typ n,
SR.Vanilla,
store_ptr
(* Common code for a[e] as lexp and as exp.
Traps or pushes the pointer to the element on the stack
*)
and compile_array_index env ae e1 e2 =
compile_exp_vanilla env ae e1 ^^ (* offset to array *)
compile_exp_vanilla env ae e2 ^^ (* idx *)
Arr.idx_bigint env
and compile_prim_invocation (env : E.t) ae p es at =
(* for more concise code when all arguments and result use the same sr *)
let const_sr sr inst = sr, G.concat_map (compile_exp_as env ae sr) es ^^ inst in
begin match p, es with
(* Calls *)
| CallPrim _, [e1; e2] ->
let sort, control, _, arg_tys, ret_tys = Type.(as_func (promote e1.note.Note.typ)) in
let n_args = List.length arg_tys in
let return_arity = match control with
| Type.Returns -> List.length ret_tys
| Type.Replies -> 0
| Type.Promises -> assert false in
let fun_sr, code1 = compile_exp env ae e1 in
(* we duplicate this pattern match to emulate pattern guards *)
let call_as_prim = match fun_sr, sort with
| SR.Const Const.Fun (_, mk_fi, Const.PrimWrapper prim), _ ->
begin match n_args, e2.it with
| 0, _ -> true
| 1, _ -> true
| n, PrimE (TupPrim, es) when List.length es = n -> true
| _, _ -> false
end
| _ -> false in
begin match fun_sr, sort with
| SR.Const Const.Fun (_, mk_fi, Const.PrimWrapper prim), _ when call_as_prim ->
assert (sort = Type.Local);
(* Handle argument tuples *)
begin match n_args, e2.it with
| 0, _ ->
let sr, code2 = compile_prim_invocation env ae prim [] at in
sr,
code1 ^^
compile_exp_as env ae (StackRep.of_arity 0) e2 ^^
code2
| 1, _ ->
compile_prim_invocation env ae prim [e2] at
| n, PrimE (TupPrim, es) ->
assert (List.length es = n);
compile_prim_invocation env ae prim es at
| _, _ ->
(* ugly case; let's just call this as a function for now *)
raise (Invalid_argument "call_as_prim was true?")
end
| SR.Const Const.Fun (_, mk_fi, _), _ ->
assert (sort = Type.Local);
StackRep.of_arity return_arity,
code1 ^^
compile_unboxed_zero ^^ (* A dummy closure *)
compile_exp_as env ae (StackRep.of_arity n_args) e2 ^^ (* the args *)
G.i (Call (nr (mk_fi()))) ^^
FakeMultiVal.load env (Lib.List.make return_arity I64Type)
| _, Type.Local ->
let (set_clos, get_clos) = new_local env "clos" in
StackRep.of_arity return_arity,
code1 ^^ StackRep.adjust env fun_sr SR.Vanilla ^^
set_clos ^^
get_clos ^^
Closure.prepare_closure_call env ^^
compile_exp_as env ae (StackRep.of_arity n_args) e2 ^^
get_clos ^^
Closure.call_closure env n_args return_arity
| _, Type.Shared _ ->
(* Non-one-shot functions have been rewritten in async.ml *)
assert (control = Type.Returns);
let (set_meth_pair, get_meth_pair) = new_local env "meth_pair" in
let (set_arg, get_arg) = new_local env "arg" in
let _, _, _, ts, _ = Type.as_func e1.note.Note.typ in
let add_cycles = Internals.add_cycles env ae in
StackRep.of_arity return_arity,
code1 ^^ StackRep.adjust env fun_sr SR.Vanilla ^^
set_meth_pair ^^
compile_exp_vanilla env ae e2 ^^ set_arg ^^
FuncDec.ic_call_one_shot env ts get_meth_pair get_arg add_cycles
end
(* Operators *)
| UnPrim (_, Operator.PosOp), [e1] -> compile_exp env ae e1
| UnPrim (t, op), [e1] ->
let sr_in, sr_out, code = compile_unop env t op in
sr_out,
compile_exp_as env ae sr_in e1 ^^
code
| BinPrim (t, op), [e1;e2] ->
let sr_in, sr_out, code = compile_binop env t op in
sr_out,
compile_exp_as env ae sr_in e1 ^^
compile_exp_as env ae sr_in e2 ^^
code
(* special case: recognize negation *)
| RelPrim (Type.(Prim Bool), Operator.EqOp), [e1; {it = LitE (BoolLit false); _}] ->
SR.bool,
compile_exp_as_test env ae e1 ^^
compile_test I64Op.Eqz
| RelPrim (t, op), [e1;e2] ->
let sr, code = compile_relop env t op in
SR.bool,
compile_exp_as env ae sr e1 ^^
compile_exp_as env ae sr e2 ^^
code
(* Tuples *)
| TupPrim, es ->
SR.UnboxedTuple (List.length es),
G.concat_map (compile_exp_vanilla env ae) es
| ProjPrim n, [e1] ->
SR.Vanilla,
compile_exp_vanilla env ae e1 ^^ (* offset to tuple (an array) *)
Tuple.load_n env (Int64.of_int n)
| OptPrim, [e] ->
SR.Vanilla,
Opt.inject env (compile_exp_vanilla env ae e)
| TagPrim l, [e] ->
SR.Vanilla,
Variant.inject env l (compile_exp_vanilla env ae e)
| DotPrim name, [e] ->
let sr, code1 = compile_exp env ae e in
begin match sr with
| SR.Const Const.Obj fs ->
let c = List.assoc name fs in
SR.Const c, code1
| _ ->
SR.Vanilla,
code1 ^^ StackRep.adjust env sr SR.Vanilla ^^
Object.load_idx env e.note.Note.typ name
end
| ActorDotPrim name, [e] ->
SR.Vanilla,
compile_exp_vanilla env ae e ^^
IC.actor_public_field env name
| ArrayPrim (m, t), es ->
SR.Vanilla,
Arr.lit env Tagged.(if m = Ir.Var then M else I) (List.map (compile_exp_vanilla env ae) es)
| IdxPrim, [e1; e2] ->
SR.Vanilla,
compile_array_index env ae e1 e2 ^^
load_ptr
(* NB: all these operations assume a valid array offset fits in a compact bignum *)
| NextArrayOffset, [e] ->
let one_untagged = Int64.shift_left 1L (64 - BitTagged.ubits_of Type.Int) in
SR.Vanilla,
compile_exp_vanilla env ae e ^^ (* previous byte offset to array *)
compile_add_const one_untagged (* preserving the tag in low bits *)
| EqArrayOffset, [e1; e2] ->
SR.bool,
compile_exp_vanilla env ae e1 ^^
BitTagged.sanity_check_tag __LINE__ env Type.Int ^^
compile_exp_vanilla env ae e2 ^^
BitTagged.sanity_check_tag __LINE__ env Type.Int ^^
(* equate (without untagging) *)
compile_comparison I64Op.Eq
| DerefArrayOffset, [e1; e2] ->
SR.Vanilla,
(* NB: no bounds check on index *)
compile_exp_vanilla env ae e1 ^^ (* skewed pointer to array *)
Tagged.load_forwarding_pointer env ^^
compile_exp_vanilla env ae e2 ^^ (* byte offset *)
BitTagged.untag __LINE__ env Type.Int ^^
(* TODO: Refactor 3L to use word_size *)
compile_shl_const 3L ^^ (* effectively a multiplication by word_size *)
(* Note: the below two lines compile to `i64.add; i64.load offset=OFFSET`
with `OFFSET = Arr.header_size * word_size + ptr_unskew`,
thus together also unskewing the pointer and skipping administrative
fields, effectively arriving at the desired element *)
G.i (Binary (Wasm_exts.Values.I64 I64Op.Add)) ^^
(* Not using Tagged.load_field since it is not a proper pointer to the array start *)
Heap.load_field Arr.header_size (* loads the element at the byte offset *)
| GetLastArrayOffset, [e] ->
assert (BitTagged.can_tag_const Type.Int (Int64.sub Arr.max_array_size 1L));
SR.Vanilla,
compile_exp_vanilla env ae e ^^ (* array *)
Arr.len env ^^
compile_sub_const 1L ^^
BigNum.from_signed_word_compact env
| BreakPrim name, [e] ->
let d = VarEnv.get_label_depth ae name in
SR.Unreachable,
compile_exp_vanilla env ae e ^^
G.branch_to_ d
| AssertPrim, [e1] ->
SR.unit,
compile_exp_as env ae SR.bool e1 ^^
E.if0 G.nop (IC.fail_assert env at)
| RetPrim, [e] ->
SR.Unreachable,
compile_exp_as env ae (StackRep.of_arity (E.get_return_arity env)) e ^^
FakeMultiVal.store env (Lib.List.make (E.get_return_arity env) I64Type) ^^
G.i Return
(* Numeric conversions *)
| NumConvWrapPrim (t1, t2), [e] -> begin
let open Type in
match t1, t2 with
| (Nat|Int), (Nat8|Nat16|Nat32|Int8|Int16|Int32) ->
SR.UnboxedWord64 t2, (* ! *)
compile_exp_vanilla env ae e ^^
Prim.prim_intToWordNShifted env (TaggedSmallWord.shift_of_type t2)
| (Nat|Int), ((Nat64|Int64) as p) ->
SR.UnboxedWord64 p,
compile_exp_vanilla env ae e ^^
BigNum.truncate_to_word64 env
| Nat64, Int64 | Int64, Nat64 ->
SR.UnboxedWord64 t2,
compile_exp_as env ae (SR.UnboxedWord64 t1) e
| Nat32, Int32 | Int32, Nat32 ->
SR.UnboxedWord64 t2,
compile_exp_as env ae (SR.UnboxedWord64 t1) e
| Nat16, Int16 | Int16, Nat16
| Nat8, Int8 | Int8, Nat8 ->
SR.UnboxedWord64 t2,
compile_exp_as env ae (SR.UnboxedWord64 t1) e
| Char, Nat32 ->
SR.UnboxedWord64 Nat32,
compile_exp_as env ae (SR.UnboxedWord64 t1) e ^^
TaggedSmallWord.lsb_adjust_codepoint env ^^
TaggedSmallWord.msb_adjust Nat32
| _ -> SR.Unreachable, todo_trap env "compile_prim_invocation" (Arrange_ir.prim p)
end
| NumConvTrapPrim (t1, t2), [e] -> begin
let open Type in
match t1, t2 with
| Int, Int64 ->
SR.UnboxedWord64 Int64,
compile_exp_vanilla env ae e ^^
Func.share_code1 Func.Never env "Int->Int64" ("n", I64Type) [I64Type] (fun env get_n ->
get_n ^^
BigNum.fits_signed_bits env 64 ^^
E.else_trap_with env "losing precision" ^^
get_n ^^
BigNum.truncate_to_word64 env)
| Int, (Int8|Int16|Int32 as pty) ->
StackRep.of_type (Prim pty),
compile_exp_vanilla env ae e ^^
Func.share_code1 Func.Never env (prim_fun_name pty "Int->") ("n", I64Type) [I64Type] (fun env get_n ->
get_n ^^
BigNum.fits_signed_bits env (TaggedSmallWord.bits_of_type pty) ^^
E.else_trap_with env "losing precision" ^^
get_n ^^
BigNum.truncate_to_word32 env ^^
TaggedSmallWord.msb_adjust pty)
| Nat, Nat64 ->
SR.UnboxedWord64 Nat64,
compile_exp_vanilla env ae e ^^
Func.share_code1 Func.Never env "Nat->Nat64" ("n", I64Type) [I64Type] (fun env get_n ->
get_n ^^
BigNum.fits_unsigned_bits env 64 ^^
E.else_trap_with env "losing precision" ^^
get_n ^^
BigNum.truncate_to_word64 env)
| Nat, (Nat8|Nat16|Nat32 as pty) ->
StackRep.of_type (Prim pty),
compile_exp_vanilla env ae e ^^
Func.share_code1 Func.Never env (prim_fun_name pty "Nat->") ("n", I64Type) [I64Type] (fun env get_n ->
get_n ^^
BigNum.fits_unsigned_bits env (TaggedSmallWord.bits_of_type pty) ^^
E.else_trap_with env "losing precision" ^^
get_n ^^
BigNum.truncate_to_word32 env ^^
TaggedSmallWord.msb_adjust pty)
| (Nat8|Nat16|Nat32), Nat ->
SR.Vanilla,
compile_exp_as env ae (SR.UnboxedWord64 t1) e ^^
Prim.prim_shiftWordNtoUnsigned env (TaggedSmallWord.shift_of_type t1)
| (Int8|Int16|Int32), Int ->
SR.Vanilla,
compile_exp_as env ae (SR.UnboxedWord64 t1) e ^^
Prim.prim_shiftWordNtoSigned env (TaggedSmallWord.shift_of_type t1)
| Nat64, Nat ->
SR.Vanilla,
compile_exp_as env ae (SR.UnboxedWord64 Nat64) e ^^
BigNum.from_word64 env
| Int64, Int ->
SR.Vanilla,
compile_exp_as env ae (SR.UnboxedWord64 Int64) e ^^
BigNum.from_signed_word64 env
| Nat32, Char ->
SR.UnboxedWord64 Type.Char, (* ! *)
compile_exp_as env ae (SR.UnboxedWord64 Nat32) e ^^
TaggedSmallWord.lsb_adjust Nat32 ^^
TaggedSmallWord.check_and_msb_adjust_codepoint env (* TBR *)
| Float, Int ->
SR.Vanilla,
compile_exp_as env ae SR.UnboxedFloat64 e ^^
E.call_import env "rts" "bigint_of_float64"
| Int, Float ->
SR.UnboxedFloat64,
compile_exp_vanilla env ae e ^^
let set_b, get_b = new_local env "b" in
set_b ^^
get_b ^^
BitTagged.if_tagged_scalar env [F64Type]
(get_b ^^
BitTagged.untag __LINE__ env Type.Int ^^
G.i (Convert (Wasm_exts.Values.F64 F64Op.ConvertSI64)))
(get_b ^^
E.call_import env "rts" "bigint_to_float64")
| Float, Int64 ->
SR.UnboxedWord64 Int64,
compile_exp_as env ae SR.UnboxedFloat64 e ^^
G.i (Convert (Wasm_exts.Values.I64 I64Op.TruncSF64))
| Int64, Float ->
SR.UnboxedFloat64,
compile_exp_as env ae (SR.UnboxedWord64 Int64) e ^^
G.i (Convert (Wasm_exts.Values.F64 F64Op.ConvertSI64))
| (Nat8 as from_typ), (Nat16 as to_typ)
| (Nat16 as from_typ), (Nat32 as to_typ)
| (Nat32 as from_typ), (Nat64 as to_typ) ->
SR.UnboxedWord64 to_typ,
compile_exp_as env ae (SR.UnboxedWord64 from_typ) e ^^
TaggedSmallWord.lsb_adjust from_typ ^^
TaggedSmallWord.msb_adjust to_typ
| (Nat16 as from_typ), (Nat8 as to_typ)
| (Nat32 as from_typ), (Nat16 as to_typ)
| (Nat64 as from_typ), (Nat32 as to_typ) ->
SR.UnboxedWord64 to_typ,
let num_bits = (TaggedSmallWord.bits_of_type to_typ) in
let set_val, get_val = new_local env "convertee" in
compile_exp_as env ae (SR.UnboxedWord64 from_typ) e ^^
set_val ^^
get_val ^^
compile_shrU_const (Int64.of_int (64 - num_bits)) ^^
E.then_trap_with env "losing precision" ^^
get_val ^^
compile_shl_const (Int64.of_int num_bits)
| (Int8 as from_typ), (Int16 as to_typ)
| (Int16 as from_typ), (Int32 as to_typ)
| (Int32 as from_typ), (Int64 as to_typ) ->
SR.UnboxedWord64 to_typ,
compile_exp_as env ae (SR.UnboxedWord64 from_typ) e ^^
TaggedSmallWord.lsb_adjust from_typ ^^
TaggedSmallWord.msb_adjust to_typ
| (Int16 as from_typ), (Int8 as to_typ)
| (Int32 as from_typ), (Int16 as to_typ)
| (Int64 as from_typ), (Int32 as to_typ) ->
SR.UnboxedWord64 to_typ,
let num_bits = (TaggedSmallWord.bits_of_type to_typ) in
let set_val, get_val = new_local env "convertee" in
compile_exp_as env ae (SR.UnboxedWord64 from_typ) e ^^
set_val ^^
get_val ^^
compile_shl_const (Int64.of_int num_bits) ^^
compile_shrS_const (Int64.of_int num_bits) ^^
get_val ^^
compile_eq env Type.(Prim from_typ) ^^
E.else_trap_with env "losing precision" ^^
get_val ^^
compile_shl_const (Int64.of_int num_bits)
| _ -> SR.Unreachable, todo_trap env "compile_prim_invocation" (Arrange_ir.prim p)
end
| SerializePrim ts, [e] ->
SR.Vanilla,
compile_exp_vanilla env ae e ^^
Serialization.serialize env ts ^^
Blob.of_ptr_size env
| DeserializePrim ts, [e] ->
StackRep.of_arity (List.length ts),
compile_exp_vanilla env ae e ^^
Bool.lit false ^^ (* can't recover *)
Serialization.deserialize_from_blob false env ts
| DeserializeOptPrim ts, [e] ->
SR.Vanilla,
compile_exp_vanilla env ae e ^^
Bool.lit true ^^ (* can (!) recover *)
Serialization.deserialize_from_blob false env ts ^^
begin match ts with
| [] ->
(* return some () *)
Opt.inject env (Tuple.compile_unit env)
| [t] ->
(* save to local, propagate error as null or return some value *)
let (set_val, get_val) = new_local env "val" in
set_val ^^
get_val ^^
compile_eq_const (Serialization.coercion_error_value env) ^^
E.if1 I64Type
(Opt.null_lit env)
(Opt.inject env get_val)
| ts ->
(* propagate any errors as null or return some tuples using shared code *)
let n = List.length ts in
let name = Printf.sprintf "to_opt_%i_tuple" n in
let args = Lib.List.table n (fun i -> (Printf.sprintf "arg%i" i, I64Type)) in
Func.share_code Func.Always env name args [I64Type] (fun env getters ->
let locals =
Lib.List.table n (fun i -> List.nth getters i) in
let rec go ls =
match ls with
| get_val::ls' ->
get_val ^^
compile_eq_const (Serialization.coercion_error_value env) ^^
E.if1 I64Type
(Opt.null_lit env)
(go ls')
| [] ->
Opt.inject env (Arr.lit env Tagged.T locals)
in
go locals)
end
| ICPerformGC, [] ->
SR.unit,
GC.collect_garbage env
| ICStableSize t, [e] ->
SR.UnboxedWord64 Type.Nat64,
E.trap_with env "Deprecated with enhanced orthogonal persistence"
(* Other prims, unary *)
| OtherPrim "array_len", [e] ->
SR.Vanilla,
compile_exp_vanilla env ae e ^^
Arr.len env ^^
BigNum.from_word64 env
| OtherPrim "text_len", [e] ->
SR.Vanilla, compile_exp_vanilla env ae e ^^ Text.len_nat env
| OtherPrim "text_iter", [e] ->
SR.Vanilla, compile_exp_vanilla env ae e ^^ Text.iter env
| OtherPrim "text_iter_done", [e] ->
SR.bool, compile_exp_vanilla env ae e ^^ Text.iter_done env
| OtherPrim "text_iter_next", [e] ->
SR.UnboxedWord64 Type.Char, compile_exp_vanilla env ae e ^^ Text.iter_next env
| OtherPrim "text_compare", [e1; e2] ->
SR.UnboxedWord64 Type.Int8,
compile_exp_vanilla env ae e1 ^^
compile_exp_vanilla env ae e2 ^^
E.call_import env "rts" "text_compare" ^^
TaggedSmallWord.msb_adjust Type.Int8
| OtherPrim "blob_compare", [e1; e2] ->
SR.UnboxedWord64 Type.Int8,
compile_exp_vanilla env ae e1 ^^
compile_exp_vanilla env ae e2 ^^
Blob.compare env None ^^
TaggedSmallWord.msb_adjust Type.Int8
| OtherPrim "blob_size", [e] ->
SR.Vanilla, compile_exp_vanilla env ae e ^^ Blob.len_nat env
| OtherPrim "blob_vals_iter", [e] ->
SR.Vanilla, compile_exp_vanilla env ae e ^^ Blob.iter env
| OtherPrim "blob_iter_done", [e] ->
SR.bool, compile_exp_vanilla env ae e ^^ Blob.iter_done env
| OtherPrim "blob_iter_next", [e] ->
SR.UnboxedWord64 Type.Nat8, (* ! *)
compile_exp_vanilla env ae e ^^ Blob.iter_next env
| OtherPrim "lsh_Nat", [e1; e2] ->
SR.Vanilla,
compile_exp_vanilla env ae e1 ^^
compile_exp_as env ae (SR.UnboxedWord64 Type.Nat32) e2 ^^
BigNum.compile_lsh env
| OtherPrim "rsh_Nat", [e1; e2] ->
SR.Vanilla,
compile_exp_vanilla env ae e1 ^^
compile_exp_as env ae (SR.UnboxedWord64 Type.Nat32) e2 ^^
BigNum.compile_rsh env
| OtherPrim "abs", [e] ->
SR.Vanilla,
compile_exp_vanilla env ae e ^^
BigNum.compile_abs env
| OtherPrim "fabs", [e] ->
SR.UnboxedFloat64,
compile_exp_as env ae SR.UnboxedFloat64 e ^^
G.i (Unary (Wasm_exts.Values.F64 F64Op.Abs))
| OtherPrim "fsqrt", [e] ->
SR.UnboxedFloat64,
compile_exp_as env ae SR.UnboxedFloat64 e ^^
G.i (Unary (Wasm_exts.Values.F64 F64Op.Sqrt))
| OtherPrim "fceil", [e] ->
SR.UnboxedFloat64,
compile_exp_as env ae SR.UnboxedFloat64 e ^^
G.i (Unary (Wasm_exts.Values.F64 F64Op.Ceil))
| OtherPrim "ffloor", [e] ->
SR.UnboxedFloat64,
compile_exp_as env ae SR.UnboxedFloat64 e ^^
G.i (Unary (Wasm_exts.Values.F64 F64Op.Floor))
| OtherPrim "ftrunc", [e] ->
SR.UnboxedFloat64,
compile_exp_as env ae SR.UnboxedFloat64 e ^^
G.i (Unary (Wasm_exts.Values.F64 F64Op.Trunc))
| OtherPrim "fnearest", [e] ->
SR.UnboxedFloat64,
compile_exp_as env ae SR.UnboxedFloat64 e ^^
G.i (Unary (Wasm_exts.Values.F64 F64Op.Nearest))
| OtherPrim "fmin", [e; f] ->
SR.UnboxedFloat64,
compile_exp_as env ae SR.UnboxedFloat64 e ^^
compile_exp_as env ae SR.UnboxedFloat64 f ^^
G.i (Binary (Wasm_exts.Values.F64 F64Op.Min))
| OtherPrim "fmax", [e; f] ->
SR.UnboxedFloat64,
compile_exp_as env ae SR.UnboxedFloat64 e ^^
compile_exp_as env ae SR.UnboxedFloat64 f ^^
G.i (Binary (Wasm_exts.Values.F64 F64Op.Max))
| OtherPrim "fcopysign", [e; f] ->
SR.UnboxedFloat64,
compile_exp_as env ae SR.UnboxedFloat64 e ^^
compile_exp_as env ae SR.UnboxedFloat64 f ^^
G.i (Binary (Wasm_exts.Values.F64 F64Op.CopySign))
| OtherPrim "Float->Text", [e] ->
SR.Vanilla,
compile_exp_as env ae SR.UnboxedFloat64 e ^^
compile_unboxed_const (TaggedSmallWord.vanilla_lit Type.Nat8 6) ^^
compile_unboxed_const (TaggedSmallWord.vanilla_lit Type.Nat8 0) ^^
E.call_import env "rts" "float_fmt"
| OtherPrim "fmtFloat->Text", [f; prec; mode] ->
SR.Vanilla,
compile_exp_as env ae SR.UnboxedFloat64 f ^^
compile_exp_vanilla env ae prec ^^
compile_exp_vanilla env ae mode ^^
E.call_import env "rts" "float_fmt"
| OtherPrim "fsin", [e] ->
SR.UnboxedFloat64,
compile_exp_as env ae SR.UnboxedFloat64 e ^^
E.call_import env "rts" "sin"
| OtherPrim "fcos", [e] ->
SR.UnboxedFloat64,
compile_exp_as env ae SR.UnboxedFloat64 e ^^
E.call_import env "rts" "cos"
| OtherPrim "ftan", [e] ->
SR.UnboxedFloat64,
compile_exp_as env ae SR.UnboxedFloat64 e ^^
E.call_import env "rts" "tan"
| OtherPrim "fasin", [e] ->
SR.UnboxedFloat64,
compile_exp_as env ae SR.UnboxedFloat64 e ^^
E.call_import env "rts" "asin"
| OtherPrim "facos", [e] ->
SR.UnboxedFloat64,
compile_exp_as env ae SR.UnboxedFloat64 e ^^
E.call_import env "rts" "acos"
| OtherPrim "fatan", [e] ->
SR.UnboxedFloat64,
compile_exp_as env ae SR.UnboxedFloat64 e ^^
E.call_import env "rts" "atan"
| OtherPrim "fatan2", [y; x] ->
SR.UnboxedFloat64,
compile_exp_as env ae SR.UnboxedFloat64 y ^^
compile_exp_as env ae SR.UnboxedFloat64 x ^^
E.call_import env "rts" "atan2"
| OtherPrim "fexp", [e] ->
SR.UnboxedFloat64,
compile_exp_as env ae SR.UnboxedFloat64 e ^^
E.call_import env "rts" "exp"
| OtherPrim "flog", [e] ->
SR.UnboxedFloat64,
compile_exp_as env ae SR.UnboxedFloat64 e ^^
E.call_import env "rts" "log"
(* Other prims, nullary *)
| SystemTimePrim, [] ->
SR.UnboxedWord64 Type.Nat64,
IC.get_system_time env
| OtherPrim "call_perform_status", [] ->
SR.UnboxedWord64 Type.Nat32,
IC.get_call_perform_status env ^^
TaggedSmallWord.msb_adjust Type.Nat32
| OtherPrim "call_perform_message", [] ->
SR.Vanilla,
IC.get_call_perform_message env
| OtherPrim "rts_version", [] ->
SR.Vanilla,
E.call_import env "rts" "version"
| OtherPrim "rts_heap_size", [] ->
SR.Vanilla,
Heap.get_heap_size env ^^ Prim.prim_word64toNat env
| OtherPrim "rts_memory_size", [] ->
SR.Vanilla,
Heap.get_memory_size ^^ BigNum.from_word64 env
| OtherPrim "rts_total_allocation", [] ->
SR.Vanilla,
Heap.get_total_allocation env ^^ BigNum.from_word64 env
| OtherPrim "rts_reclaimed", [] ->
SR.Vanilla,
Heap.get_reclaimed env ^^ BigNum.from_word64 env
| OtherPrim "rts_max_live_size", [] ->
SR.Vanilla,
Heap.get_max_live_size env ^^ BigNum.from_word64 env
| OtherPrim "rts_max_stack_size", [] ->
SR.Vanilla,
Stack.get_max_stack_size env ^^ Prim.prim_word64toNat env
| OtherPrim "rts_callback_table_count", [] ->
SR.Vanilla,
ContinuationTable.count env ^^ Prim.prim_word64toNat env
| OtherPrim "rts_callback_table_size", [] ->
SR.Vanilla,
ContinuationTable.size env ^^ Prim.prim_word64toNat env
| OtherPrim "rts_mutator_instructions", [] ->
SR.Vanilla,
GC.get_mutator_instructions env ^^ BigNum.from_word64 env
| OtherPrim "rts_collector_instructions", [] ->
SR.Vanilla,
GC.get_collector_instructions env ^^ BigNum.from_word64 env
| OtherPrim "rts_upgrade_instructions", [] ->
SR.Vanilla,
UpgradeStatistics.get_upgrade_instructions env ^^ BigNum.from_word64 env
| OtherPrim "rts_stable_memory_size", [] ->
SR.Vanilla,
StableMem.stable64_size env ^^ BigNum.from_word64 env
| OtherPrim "rts_logical_stable_memory_size", [] ->
SR.Vanilla,
StableMem.get_mem_size env ^^ BigNum.from_word64 env
(* Regions *)
| OtherPrim "regionNew", [] ->
SR.Vanilla,
Region.new_ env
| OtherPrim "regionId", [e0] ->
SR.Vanilla,
compile_exp_as env ae SR.Vanilla e0 ^^
Region.id env ^^
BigNum.from_word64 env
| OtherPrim ("regionGrow"), [e0; e1] ->
SR.UnboxedWord64 Type.Nat64,
compile_exp_as env ae SR.Vanilla e0 ^^
compile_exp_as env ae (SR.UnboxedWord64 Type.Nat64) e1 ^^
Region.grow env
| OtherPrim "regionSize", [e0] ->
SR.UnboxedWord64 Type.Nat64,
compile_exp_as env ae SR.Vanilla e0 ^^
Region.size env
| OtherPrim ("regionLoadBlob"), [e0; e1; e2] ->
SR.Vanilla,
compile_exp_as env ae SR.Vanilla e0 ^^
compile_exp_as env ae (SR.UnboxedWord64 Type.Nat64) e1 ^^
compile_exp_as env ae SR.Vanilla e2 ^^
BigNum.to_word64_with env (Blob.lit env Tagged.T "Blob size out of bounds") ^^
Region.load_blob env
| OtherPrim ("regionStoreBlob"), [e0; e1; e2] ->
SR.unit,
compile_exp_as env ae SR.Vanilla e0 ^^
compile_exp_as env ae (SR.UnboxedWord64 Type.Nat64) e1 ^^
compile_exp_as env ae SR.Vanilla e2 ^^
Region.store_blob env
| OtherPrim (("regionLoadNat8" | "regionLoadInt8" as p)), [e0; e1] ->
let ty = Type.(if p = "regionLoadNat8" then Nat8 else Int8) in
SR.UnboxedWord64 ty,
compile_exp_as env ae SR.Vanilla e0 ^^
compile_exp_as env ae (SR.UnboxedWord64 Type.Nat64) e1 ^^
Region.load_word8 env ^^
G.i (Convert (Wasm_exts.Values.I64 I64Op.(if ty = Type.Nat8 then ExtendUI32 else ExtendSI32))) ^^
TaggedSmallWord.msb_adjust ty
| OtherPrim (("regionStoreNat8" | "regionStoreInt8") as p), [e0; e1; e2] ->
let ty = Type.(if p = "regionStoreNat8" then Nat8 else Int8) in
SR.unit,
compile_exp_as env ae SR.Vanilla e0 ^^
compile_exp_as env ae (SR.UnboxedWord64 Type.Nat64) e1 ^^
compile_exp_as env ae (SR.UnboxedWord64 ty) e2 ^^
TaggedSmallWord.lsb_adjust ty ^^
G.i (Convert (Wasm_exts.Values.I32 I32Op.WrapI64)) ^^
Region.store_word8 env
| OtherPrim (("regionLoadNat16" | "regionLoadInt16") as p), [e0; e1] ->
let ty = Type.(if p = "regionLoadNat16" then Nat16 else Int16) in
SR.UnboxedWord64 ty,
compile_exp_as env ae SR.Vanilla e0 ^^
compile_exp_as env ae (SR.UnboxedWord64 Type.Nat64) e1 ^^
Region.load_word16 env ^^
G.i (Convert (Wasm_exts.Values.I64 I64Op.(if ty = Type.Nat16 then ExtendUI32 else ExtendSI32))) ^^
TaggedSmallWord.msb_adjust ty
| OtherPrim (("regionStoreNat16" | "regionStoreInt16") as p), [e0; e1; e2] ->
let ty = Type.(if p = "regionStoreNat16" then Nat16 else Int16) in
SR.unit,
compile_exp_as env ae SR.Vanilla e0 ^^
compile_exp_as env ae (SR.UnboxedWord64 Type.Nat64) e1 ^^
compile_exp_as env ae (SR.UnboxedWord64 ty) e2 ^^
TaggedSmallWord.lsb_adjust ty ^^
G.i (Convert (Wasm_exts.Values.I32 I32Op.WrapI64)) ^^
Region.store_word16 env
| OtherPrim (("regionLoadNat32" | "regionLoadInt32") as p), [e0; e1] ->
let ty = Type.(if p = "regionLoadNat32" then Nat32 else Int32) in
SR.UnboxedWord64 ty,
compile_exp_as env ae SR.Vanilla e0 ^^
compile_exp_as env ae (SR.UnboxedWord64 Type.Nat64) e1 ^^
Region.load_word32 env ^^
G.i (Convert (Wasm_exts.Values.I64 I64Op.(if ty = Type.Nat32 then ExtendUI32 else ExtendSI32))) ^^
TaggedSmallWord.msb_adjust ty
| OtherPrim (("regionStoreNat32" | "regionStoreInt32") as p), [e0; e1; e2] ->
let ty = Type.(if p = "regionStoreNat32" then Nat32 else Int32) in
SR.unit,
compile_exp_as env ae SR.Vanilla e0 ^^
compile_exp_as env ae (SR.UnboxedWord64 Type.Nat64) e1 ^^
compile_exp_as env ae (SR.UnboxedWord64 ty) e2 ^^
TaggedSmallWord.lsb_adjust ty ^^
G.i (Convert (Wasm_exts.Values.I32 I32Op.WrapI64)) ^^
Region.store_word32 env
| OtherPrim (("regionLoadNat64" | "regionLoadInt64") as p), [e0; e1] ->
let ty = Type.(if p = "regionLoadNat64" then Nat64 else Int64) in
SR.UnboxedWord64 ty,
compile_exp_as env ae SR.Vanilla e0 ^^
compile_exp_as env ae (SR.UnboxedWord64 Type.Nat64) e1 ^^
Region.load_word64 env
| OtherPrim (("regionStoreNat64" | "regionStoreInt64") as p), [e0; e1; e2] ->
let ty = Type.(if p = "regionStoreNat64" then Nat64 else Int64) in
SR.unit,
compile_exp_as env ae SR.Vanilla e0 ^^
compile_exp_as env ae (SR.UnboxedWord64 Type.Nat64) e1 ^^
compile_exp_as env ae (SR.UnboxedWord64 ty) e2 ^^
Region.store_word64 env
| OtherPrim ("regionLoadFloat"), [e0; e1] ->
SR.UnboxedFloat64,
compile_exp_as env ae SR.Vanilla e0 ^^
compile_exp_as env ae (SR.UnboxedWord64 Type.Nat64) e1 ^^
Region.load_float64 env
| OtherPrim ("regionStoreFloat"), [e0; e1; e2] ->
SR.unit,
compile_exp_as env ae SR.Vanilla e0 ^^
compile_exp_as env ae (SR.UnboxedWord64 Type.Nat64) e1 ^^
compile_exp_as env ae SR.UnboxedFloat64 e2 ^^
Region.store_float64 env
(* Other prims, unary *)
| OtherPrim "global_timer_set", [e] ->
SR.UnboxedWord64 Type.Nat64,
compile_exp_as env ae (SR.UnboxedWord64 Type.Nat64) e ^^
IC.system_call env "global_timer_set"
| OtherPrim "is_controller", [e] ->
SR.Vanilla,
let set_principal, get_principal = new_local env "principal" in
compile_exp_vanilla env ae e ^^
set_principal ^^ get_principal ^^
Blob.payload_ptr_unskewed env ^^
get_principal ^^
Blob.len env ^^
IC.is_controller env
| OtherPrim "canister_version", [] ->
SR.UnboxedWord64 Type.Nat64,
IC.canister_version env
| OtherPrim "crc32Hash", [e] ->
SR.UnboxedWord64 Type.Nat32,
compile_exp_vanilla env ae e ^^
E.call_import env "rts" "compute_crc32" ^^
G.i (Convert (Wasm_exts.Values.I64 I64Op.ExtendUI32)) ^^
TaggedSmallWord.msb_adjust Type.Nat32
| OtherPrim "idlHash", [e] ->
SR.Vanilla,
E.trap_with env "idlHash only implemented in interpreter"
| OtherPrim "popcnt8", [e] ->
SR.UnboxedWord64 Type.Nat8,
compile_exp_as env ae (SR.UnboxedWord64 Type.Nat8) e ^^
G.i (Unary (Wasm_exts.Values.I64 I64Op.Popcnt)) ^^
TaggedSmallWord.msb_adjust Type.Nat8
| OtherPrim "popcnt16", [e] ->
SR.UnboxedWord64 Type.Nat16,
compile_exp_as env ae (SR.UnboxedWord64 Type.Nat16) e ^^
G.i (Unary (Wasm_exts.Values.I64 I64Op.Popcnt)) ^^
TaggedSmallWord.msb_adjust Type.Nat16
| OtherPrim "popcntInt8", [e] ->
SR.UnboxedWord64 Type.Int8,
compile_exp_as env ae (SR.UnboxedWord64 Type.Int8) e ^^
G.i (Unary (Wasm_exts.Values.I64 I64Op.Popcnt)) ^^
TaggedSmallWord.msb_adjust Type.Int8
| OtherPrim "popcntInt16", [e] ->
SR.UnboxedWord64 Type.Int16,
compile_exp_as env ae (SR.UnboxedWord64 Type.Int16) e ^^
G.i (Unary (Wasm_exts.Values.I64 I64Op.Popcnt)) ^^
TaggedSmallWord.msb_adjust Type.Int16
| OtherPrim "popcnt32", [e] ->
SR.UnboxedWord64 Type.Nat32,
compile_exp_as env ae (SR.UnboxedWord64 Type.Nat32) e ^^
G.i (Unary (Wasm_exts.Values.I64 I64Op.Popcnt)) ^^
TaggedSmallWord.msb_adjust Type.Nat32
| OtherPrim "popcntInt32", [e] ->
SR.UnboxedWord64 Type.Int32,
compile_exp_as env ae (SR.UnboxedWord64 Type.Int32) e ^^
G.i (Unary (Wasm_exts.Values.I64 I64Op.Popcnt))^^
TaggedSmallWord.msb_adjust Type.Int32
| OtherPrim "popcnt64", [e] ->
SR.UnboxedWord64 Type.Nat64,
compile_exp_as env ae (SR.UnboxedWord64 Type.Nat64) e ^^
G.i (Unary (Wasm_exts.Values.I64 I64Op.Popcnt))
| OtherPrim "popcntInt64", [e] ->
SR.UnboxedWord64 Type.Int64,
compile_exp_as env ae (SR.UnboxedWord64 Type.Int64) e ^^
G.i (Unary (Wasm_exts.Values.I64 I64Op.Popcnt))
| OtherPrim "clz8", [e] ->
SR.UnboxedWord64 Type.Nat8,
compile_exp_as env ae (SR.UnboxedWord64 Type.Nat8) e ^^
TaggedSmallWord.clz_kernel Type.Nat8
| OtherPrim "clz16", [e] ->
SR.UnboxedWord64 Type.Nat16,
compile_exp_as env ae (SR.UnboxedWord64 Type.Nat16) e ^^
TaggedSmallWord.clz_kernel Type.Nat16
| OtherPrim "clzInt8", [e] ->
SR.UnboxedWord64 Type.Int8,
compile_exp_as env ae (SR.UnboxedWord64 Type.Int8) e ^^
TaggedSmallWord.clz_kernel Type.Int8
| OtherPrim "clzInt16", [e] ->
SR.UnboxedWord64 Type.Int16,
compile_exp_as env ae (SR.UnboxedWord64 Type.Int16) e ^^
TaggedSmallWord.clz_kernel Type.Int16
| OtherPrim "clz32", [e] ->
SR.UnboxedWord64 Type.Nat32,
compile_exp_as env ae (SR.UnboxedWord64 Type.Nat32) e ^^
TaggedSmallWord.clz_kernel Type.Nat32
| OtherPrim "clzInt32", [e] ->
SR.UnboxedWord64 Type.Int32,
compile_exp_as env ae (SR.UnboxedWord64 Type.Int32) e ^^
TaggedSmallWord.clz_kernel Type.Int32
| OtherPrim "clz64", [e] ->
SR.UnboxedWord64 Type.Nat64,
compile_exp_as env ae (SR.UnboxedWord64 Type.Nat64) e ^^
G.i (Unary (Wasm_exts.Values.I64 I64Op.Clz))
| OtherPrim "clzInt64", [e] ->
SR.UnboxedWord64 Type.Int64,
compile_exp_as env ae (SR.UnboxedWord64 Type.Int64) e ^^
G.i (Unary (Wasm_exts.Values.I64 I64Op.Clz))
| OtherPrim "ctz8", [e] ->
SR.UnboxedWord64 Type.Nat8,
compile_exp_as env ae (SR.UnboxedWord64 Type.Nat8) e ^^
TaggedSmallWord.ctz_kernel Type.Nat8
| OtherPrim "ctz16", [e] ->
SR.UnboxedWord64 Type.Nat16,
compile_exp_as env ae (SR.UnboxedWord64 Type.Nat16) e ^^
TaggedSmallWord.ctz_kernel Type.Nat16
| OtherPrim "ctzInt8", [e] ->
SR.UnboxedWord64 Type.Int8,
compile_exp_as env ae (SR.UnboxedWord64 Type.Int8) e ^^
TaggedSmallWord.ctz_kernel Type.Int8
| OtherPrim "ctzInt16", [e] ->
SR.UnboxedWord64 Type.Int16,
compile_exp_as env ae (SR.UnboxedWord64 Type.Int16) e ^^
TaggedSmallWord.ctz_kernel Type.Int16
| OtherPrim "ctz32", [e] ->
SR.UnboxedWord64 Type.Nat32,
compile_exp_as env ae (SR.UnboxedWord64 Type.Nat32) e ^^
TaggedSmallWord.ctz_kernel Type.Nat32
| OtherPrim "ctzInt32", [e] ->
SR.UnboxedWord64 Type.Int32,
compile_exp_as env ae (SR.UnboxedWord64 Type.Int32) e ^^
TaggedSmallWord.ctz_kernel Type.Int32
| OtherPrim "ctz64", [e] ->
SR.UnboxedWord64 Type.Nat64,
compile_exp_as env ae (SR.UnboxedWord64 Type.Nat64) e ^^
G.i (Unary (Wasm_exts.Values.I64 I64Op.Ctz))
| OtherPrim "ctzInt64", [e] ->
SR.UnboxedWord64 Type.Int64,
compile_exp_as env ae (SR.UnboxedWord64 Type.Int64) e ^^
G.i (Unary (Wasm_exts.Values.I64 I64Op.Ctz))
| OtherPrim "conv_Char_Text", [e] ->
SR.Vanilla,
compile_exp_vanilla env ae e ^^
Text.prim_showChar env
| OtherPrim "char_to_upper", [e] ->
compile_char_to_char_rts env ae e "char_to_upper"
| OtherPrim "char_to_lower", [e] ->
compile_char_to_char_rts env ae e "char_to_lower"
| OtherPrim "char_is_whitespace", [e] ->
compile_char_to_bool_rts env ae e "char_is_whitespace"
| OtherPrim "char_is_lowercase", [e] ->
compile_char_to_bool_rts env ae e "char_is_lowercase"
| OtherPrim "char_is_uppercase", [e] ->
compile_char_to_bool_rts env ae e "char_is_uppercase"
| OtherPrim "char_is_alphabetic", [e] ->
compile_char_to_bool_rts env ae e "char_is_alphabetic"
| OtherPrim "print", [e] ->
SR.unit,
compile_exp_vanilla env ae e ^^
IC.print_text env
| OtherPrim "text_lowercase", [e] ->
SR.Vanilla,
compile_exp_vanilla env ae e ^^
Text.lowercase env
| OtherPrim "text_uppercase", [e] ->
SR.Vanilla,
compile_exp_vanilla env ae e ^^
Text.uppercase env
| OtherPrim "performanceCounter", [e] ->
(SR.UnboxedWord64 Type.Nat64),
compile_exp_as env ae (SR.UnboxedWord64 Type.Nat32) e ^^
IC.performance_counter env
| OtherPrim "trap", [e] ->
SR.Unreachable,
compile_exp_vanilla env ae e ^^
IC.trap_text env
| OtherPrim "principalOfBlob", e ->
const_sr SR.Vanilla (Blob.copy env Tagged.B Tagged.P)
| OtherPrim "blobOfPrincipal", e ->
const_sr SR.Vanilla (Blob.copy env Tagged.P Tagged.B)
| OtherPrim "principalOfActor", e ->
const_sr SR.Vanilla (Blob.copy env Tagged.A Tagged.P)
| OtherPrim "blobToArray", e ->
const_sr SR.Vanilla (Arr.ofBlob env Tagged.I)
| OtherPrim "blobToArrayMut", e ->
const_sr SR.Vanilla (Arr.ofBlob env Tagged.M)
| OtherPrim ("arrayToBlob" | "arrayMutToBlob"), e ->
const_sr SR.Vanilla (Arr.toBlob env)
| OtherPrim (("stableMemoryLoadNat32" | "stableMemoryLoadInt32") as p), [e] ->
let ty = Type.(if p = "stableMemoryLoadNat32" then Nat32 else Int32) in
SR.UnboxedWord64 ty,
compile_exp_as env ae (SR.UnboxedWord64 Type.Nat64) e ^^
StableMemoryInterface.load_word32 env ^^
G.i (Convert (Wasm_exts.Values.I64 I64Op.(if ty = Type.Nat32 then ExtendUI32 else ExtendSI32))) ^^
TaggedSmallWord.msb_adjust ty
| OtherPrim (("stableMemoryStoreNat32" | "stableMemoryStoreInt32") as p), [e1; e2] ->
let ty = Type.(if p = "stableMemoryStoreNat32" then Nat32 else Int32) in
SR.unit,
compile_exp_as env ae (SR.UnboxedWord64 Type.Nat64) e1 ^^
compile_exp_as env ae (SR.UnboxedWord64 ty) e2 ^^
TaggedSmallWord.lsb_adjust ty ^^
G.i (Convert (Wasm_exts.Values.I32 I32Op.WrapI64)) ^^
StableMemoryInterface.store_word32 env
| OtherPrim (("stableMemoryLoadNat8" | "stableMemoryLoadInt8") as p), [e] ->
let ty = Type.(if p = "stableMemoryLoadNat8" then Nat8 else Int8) in
SR.UnboxedWord64 ty,
compile_exp_as env ae (SR.UnboxedWord64 Type.Nat64) e ^^
StableMemoryInterface.load_word8 env ^^
G.i (Convert (Wasm_exts.Values.I64 I64Op.(if ty = Type.Nat8 then ExtendUI32 else ExtendSI32))) ^^
TaggedSmallWord.msb_adjust ty
(* Other prims, binary *)
| OtherPrim (("stableMemoryStoreNat8" | "stableMemoryStoreInt8") as p), [e1; e2] ->
let ty = Type.(if p = "stableMemoryStoreNat8" then Nat8 else Int8) in
SR.unit,
compile_exp_as env ae (SR.UnboxedWord64 Type.Nat64) e1 ^^
compile_exp_as env ae (SR.UnboxedWord64 ty) e2 ^^
TaggedSmallWord.lsb_adjust ty ^^
G.i (Convert (Wasm_exts.Values.I32 I32Op.WrapI64)) ^^
StableMemoryInterface.store_word8 env
| OtherPrim (("stableMemoryLoadNat16" | "stableMemoryLoadInt16") as p), [e] ->
let ty = Type.(if p = "stableMemoryLoadNat16" then Nat16 else Int16) in
SR.UnboxedWord64 ty,
compile_exp_as env ae (SR.UnboxedWord64 Type.Nat64) e ^^
StableMemoryInterface.load_word16 env ^^
G.i (Convert (Wasm_exts.Values.I64 I64Op.(if ty = Type.Nat16 then ExtendUI32 else ExtendSI32))) ^^
TaggedSmallWord.msb_adjust ty
| OtherPrim (("stableMemoryStoreNat16" | "stableMemoryStoreInt16") as p), [e1; e2] ->
let ty = Type.(if p = "stableMemoryStoreNat16" then Nat16 else Int16) in
SR.unit,
compile_exp_as env ae (SR.UnboxedWord64 Type.Nat64) e1 ^^
compile_exp_as env ae (SR.UnboxedWord64 ty) e2 ^^
TaggedSmallWord.lsb_adjust ty ^^
G.i (Convert (Wasm_exts.Values.I32 I32Op.WrapI64)) ^^
StableMemoryInterface.store_word16 env
| OtherPrim (("stableMemoryLoadNat64" | "stableMemoryLoadInt64") as p), [e] ->
let ty = Type.(if p = "stableMemoryLoadNat64" then Nat64 else Int64) in
SR.UnboxedWord64 ty,
compile_exp_as env ae (SR.UnboxedWord64 Type.Nat64) e ^^
StableMemoryInterface.load_word64 env
| OtherPrim (("stableMemoryStoreNat64" | "stableMemoryStoreInt64") as p), [e1; e2] ->
let ty = Type.(if p = "stableMemoryStoreNat64" then Nat64 else Int64) in
SR.unit,
compile_exp_as env ae (SR.UnboxedWord64 Type.Nat64) e1 ^^
compile_exp_as env ae (SR.UnboxedWord64 ty) e2 ^^
StableMemoryInterface.store_word64 env
| OtherPrim "stableMemoryLoadFloat", [e] ->
SR.UnboxedFloat64,
compile_exp_as env ae (SR.UnboxedWord64 Type.Nat64) e ^^
StableMemoryInterface.load_float64 env
| OtherPrim "stableMemoryStoreFloat", [e1; e2] ->
SR.unit,
compile_exp_as env ae (SR.UnboxedWord64 Type.Nat64) e1 ^^
compile_exp_as env ae SR.UnboxedFloat64 e2 ^^
StableMemoryInterface.store_float64 env
| OtherPrim "stableMemoryLoadBlob", [e1; e2] ->
SR.Vanilla,
compile_exp_as env ae (SR.UnboxedWord64 Type.Nat64) e1 ^^
compile_exp_as env ae SR.Vanilla e2 ^^
BigNum.to_word64_with env (Blob.lit env Tagged.T "Blob size out of bounds") ^^
StableMemoryInterface.load_blob env
| OtherPrim "stableMemoryStoreBlob", [e1; e2] ->
SR.unit,
compile_exp_as env ae (SR.UnboxedWord64 Type.Nat64) e1 ^^
compile_exp_as env ae SR.Vanilla e2 ^^
StableMemoryInterface.store_blob env
| OtherPrim "stableMemorySize", [] ->
SR.UnboxedWord64 Type.Nat64,
StableMemoryInterface.size env
| OtherPrim "stableMemoryGrow", [e] ->
SR.UnboxedWord64 Type.Nat64,
compile_exp_as env ae (SR.UnboxedWord64 Type.Nat64) e ^^
StableMemoryInterface.grow env
| OtherPrim "stableVarQuery", [] ->
SR.Vanilla,
IC.get_self_reference env ^^
IC.actor_public_field env Type.(motoko_stable_var_info_fld.lab)
(* Other prims, binary*)
| OtherPrim "Array.init", [_;_] ->
const_sr SR.Vanilla (Arr.init env)
| OtherPrim "Array.tabulate", [_;_] ->
const_sr SR.Vanilla (Arr.tabulate env)
| OtherPrim "btst8", [_;_] ->
(* TODO: btstN returns Bool, not a small value *)
const_sr (SR.UnboxedWord64 Type.Nat8) (TaggedSmallWord.btst_kernel env Type.Nat8)
| OtherPrim "btst16", [_;_] ->
const_sr (SR.UnboxedWord64 Type.Nat16) (TaggedSmallWord.btst_kernel env Type.Nat16)
| OtherPrim "btstInt8", [_;_] ->
const_sr (SR.UnboxedWord64 Type.Int8) (TaggedSmallWord.btst_kernel env Type.Int8)
| OtherPrim "btstInt16", [_;_] ->
const_sr (SR.UnboxedWord64 Type.Int16) (TaggedSmallWord.btst_kernel env Type.Int16)
| OtherPrim "btst32", [_;_] ->
const_sr (SR.UnboxedWord64 Type.Nat32) (TaggedSmallWord.btst_kernel env Type.Nat32)
| OtherPrim "btstInt32", [_;_] ->
const_sr (SR.UnboxedWord64 Type.Int32) (TaggedSmallWord.btst_kernel env Type.Int32) (* ! *)
| OtherPrim "btst64", [_;_] ->
const_sr (SR.UnboxedWord64 Type.Nat64) (Word64.btst_kernel env)
| OtherPrim "btstInt64", [_;_] ->
const_sr (SR.UnboxedWord64 Type.Int64) (Word64.btst_kernel env)
| OtherPrim "setCandidLimits", [e1; e2; e3] ->
SR.unit,
compile_exp_as env ae (SR.UnboxedWord64 Type.Nat32) e1 ^^
TaggedSmallWord.lsb_adjust Type.Nat32 ^^
Serialization.Registers.set_value_numerator env ^^
compile_exp_as env ae (SR.UnboxedWord64 Type.Nat32) e2 ^^
TaggedSmallWord.lsb_adjust Type.Nat32 ^^
Serialization.Registers.set_value_denominator env ^^
Serialization.Registers.get_value_denominator env ^^
E.else_trap_with env "Candid limit denominator cannot be zero" ^^
compile_exp_as env ae (SR.UnboxedWord64 Type.Nat32) e3 ^^
TaggedSmallWord.lsb_adjust Type.Nat32 ^^
Serialization.Registers.set_value_bias env
| OtherPrim "getCandidLimits", [] ->
SR.UnboxedTuple 3,
Serialization.Registers.get_value_numerator env ^^
TaggedSmallWord.msb_adjust Type.Nat32 ^^
TaggedSmallWord.tag env Type.Nat32 ^^
Serialization.Registers.get_value_denominator env ^^
TaggedSmallWord.msb_adjust Type.Nat32 ^^
TaggedSmallWord.tag env Type.Nat32 ^^
Serialization.Registers.get_value_bias env ^^
TaggedSmallWord.msb_adjust Type.Nat32 ^^
TaggedSmallWord.tag env Type.Nat32
(* Coercions for abstract types *)
| CastPrim (_,_), [e] ->
compile_exp env ae e
| DecodeUtf8, [_] ->
const_sr SR.Vanilla (Text.of_blob env)
| EncodeUtf8, [_] ->
const_sr SR.Vanilla (Text.to_blob env)
(* textual to bytes *)
| BlobOfIcUrl, [_] ->
const_sr SR.Vanilla (E.call_import env "rts" "blob_of_principal")
(* The other direction *)
| IcUrlOfBlob, [_] ->
const_sr SR.Vanilla (E.call_import env "rts" "principal_of_blob")
(* Actor ids are blobs in the RTS *)
| ActorOfIdBlob _, [e] ->
SR.Vanilla,
let (set_blob, get_blob) = new_local env "blob" in
compile_exp_vanilla env ae e ^^
set_blob ^^
get_blob ^^
Blob.len env ^^
compile_unboxed_const 29L ^^
compile_comparison I64Op.LeU ^^
E.else_trap_with env "blob too long for actor principal" ^^
get_blob ^^
Blob.copy env Tagged.B Tagged.A
| SelfRef _, [] ->
SR.Vanilla, IC.get_self_reference env
| ICArgDataPrim, [] ->
SR.Vanilla, IC.arg_data env
| ICReplyPrim ts, [e] ->
SR.unit, begin match E.mode env with
| Flags.ICMode | Flags.RefMode ->
compile_exp_vanilla env ae e ^^
(* TODO: We can try to avoid the boxing and pass the arguments to
serialize individually *)
Serialization.serialize env ts ^^
IC.reply_with_data env
| _ ->
E.trap_with env "cannot reply when running locally"
end
| ICRejectPrim, [e] ->
SR.unit, IC.reject env (compile_exp_vanilla env ae e)
| ICCallerPrim, [] ->
SR.Vanilla, IC.caller env
| ICCallPrim, [f;e;k;r;c] ->
SR.unit, begin
(* TBR: Can we do better than using the notes? *)
let _, _, _, ts1, _ = Type.as_func f.note.Note.typ in
let _, _, _, ts2, _ = Type.as_func k.note.Note.typ in
let (set_meth_pair, get_meth_pair) = new_local env "meth_pair" in
let (set_arg, get_arg) = new_local env "arg" in
let (set_k, get_k) = new_local env "k" in
let (set_r, get_r) = new_local env "r" in
let (set_c, get_c) = new_local env "c" in
let add_cycles = Internals.add_cycles env ae in
compile_exp_vanilla env ae f ^^ set_meth_pair ^^
compile_exp_vanilla env ae e ^^ set_arg ^^
compile_exp_vanilla env ae k ^^ set_k ^^
compile_exp_vanilla env ae r ^^ set_r ^^
compile_exp_vanilla env ae c ^^ set_c ^^
FuncDec.ic_call env ts1 ts2 get_meth_pair get_arg get_k get_r get_c add_cycles
end
| ICCallRawPrim, [p;m;a;k;r;c] ->
SR.unit, begin
let set_meth_pair, get_meth_pair = new_local env "meth_pair" in
let set_arg, get_arg = new_local env "arg" in
let set_k, get_k = new_local env "k" in
let set_r, get_r = new_local env "r" in
let set_c, get_c = new_local env "c" in
let add_cycles = Internals.add_cycles env ae in
compile_exp_vanilla env ae p ^^
compile_exp_vanilla env ae m ^^ Text.to_blob env ^^
Tagged.load_forwarding_pointer env ^^
Tuple.from_stack env 2 ^^ set_meth_pair ^^
compile_exp_vanilla env ae a ^^ set_arg ^^
compile_exp_vanilla env ae k ^^ set_k ^^
compile_exp_vanilla env ae r ^^ set_r ^^
compile_exp_vanilla env ae c ^^ set_c ^^
FuncDec.ic_call_raw env get_meth_pair get_arg get_k get_r get_c add_cycles
end
| ICMethodNamePrim, [] ->
SR.Vanilla, IC.method_name env
| ICReplyDeadlinePrim, [] ->
SR.UnboxedWord64 Type.Nat64, IC.deadline env
| ICStableRead ty, [] ->
SR.Vanilla,
Persistence.load env ty
| ICStableWrite ty, [] ->
SR.unit,
Persistence.save env ty
(* Cycles *)
| SystemCyclesBalancePrim, [] ->
SR.Vanilla, Cycles.balance env
| SystemCyclesAddPrim, [e1] ->
SR.unit, compile_exp_vanilla env ae e1 ^^ Cycles.add env
| SystemCyclesAcceptPrim, [e1] ->
SR.Vanilla, compile_exp_vanilla env ae e1 ^^ Cycles.accept env
| SystemCyclesAvailablePrim, [] ->
SR.Vanilla, Cycles.available env
| SystemCyclesRefundedPrim, [] ->
SR.Vanilla, Cycles.refunded env
| SystemCyclesBurnPrim, [e1] ->
SR.Vanilla, compile_exp_vanilla env ae e1 ^^ Cycles.burn env
| SetCertifiedData, [e1] ->
SR.unit, compile_exp_vanilla env ae e1 ^^ IC.set_certified_data env
| GetCertificate, [] ->
SR.Vanilla,
IC.get_certificate env
(* Unknown prim *)
| _ -> SR.Unreachable, todo_trap env "compile_prim_invocation" (Arrange_ir.prim p)
end
(* Compile, infer and return stack representation *)
and compile_exp (env : E.t) ae exp =
compile_exp_with_hint env ae None exp
(* Compile to given stack representation *)
and compile_exp_as env ae sr_out e =
let sr_in, code = compile_exp_with_hint env ae (Some sr_out) e in
code ^^ StackRep.adjust env sr_in sr_out
and single_case e (cs : Ir.case list) =
match cs, e.note.Note.typ with
| [{it={pat={it=TagP (l, _);_}; _}; _}], Type.(Variant [{lab; _}]) -> l = lab
| _ -> false
and known_tag_pat p = TagP ("", p)
and simplify_cases e (cs : Ir.case list) =
match cs, e.note.Note.typ with
(* for a 2-cased variant type, the second comparison can be omitted when the first pattern
(with irrefutable subpattern) didn't match, and the pattern types line up *)
| [{it={pat={it=TagP (l1, ip); _}; _}; _} as c1; {it={pat={it=TagP (l2, pat'); _} as pat2; exp}; _} as c2], Type.(Variant [{lab=el1; _}; {lab=el2; _}])
when Ir_utils.is_irrefutable ip
&& (l1 = el1 || l1 = el2)
&& (l2 = el1 || l2 = el2) ->
[c1; {c2 with it = {exp; pat = {pat2 with it = known_tag_pat pat'}}}]
| _ -> cs
(* Compile, infer and return stack representation, taking the hint into account *)
and compile_exp_with_hint (env : E.t) ae sr_hint exp =
(fun (sr,code) -> (sr, G.with_region exp.at code)) @@
if exp.note.Note.const
then let (c, fill) = compile_const_exp env ae exp in fill env ae; (SR.Const c, G.nop)
else match exp.it with
| PrimE (p, es) when List.exists (fun e -> Type.is_non e.note.Note.typ) es ->
(* Handle dead code separately, so that we can rely on useful type
annotations below *)
SR.Unreachable,
G.concat_map (compile_exp_ignore env ae) es ^^
G.i Unreachable
| PrimE (p, es) ->
compile_prim_invocation (env : E.t) ae p es exp.at
| VarE (_, var) ->
Var.get_val env ae var
| AssignE (e1,e2) ->
SR.unit,
let (prepare_code, sr, store_code) = compile_lexp env ae e1 in
prepare_code ^^
compile_exp_as env ae sr e2 ^^
store_code
| LitE l ->
compile_lit l
| IfE (scrut, e1, e2) ->
let code_scrut = compile_exp_as_test env ae scrut in
let sr1, code1 = compile_exp_with_hint env ae sr_hint e1 in
let sr2, code2 = compile_exp_with_hint env ae sr_hint e2 in
(* Use the expected stackrep, if given, else infer from the branches *)
let sr = match sr_hint with
| Some sr -> sr
| None -> StackRep.join sr1 sr2
in
sr,
code_scrut ^^
FakeMultiVal.if_ env
(StackRep.to_block_type env sr)
(code1 ^^ StackRep.adjust env sr1 sr)
(code2 ^^ StackRep.adjust env sr2 sr)
| BlockE (decs, exp) ->
let captured = Freevars.captured_vars (Freevars.exp exp) in
let ae', codeW1 = compile_decs env ae decs captured in
let (sr, code2) = compile_exp_with_hint env ae' sr_hint exp in
(sr, codeW1 code2)
| LabelE (name, _ty, e) ->
(* The value here can come from many places -- the expression,
or any of the nested returns. Hard to tell which is the best
stack representation here.
So let’s go with Vanilla. *)
SR.Vanilla,
E.block_ env (StackRep.to_block_type env SR.Vanilla) (
G.with_current_depth (fun depth ->
let ae1 = VarEnv.add_label ae name depth in
compile_exp_vanilla env ae1 e
)
)
| LoopE e ->
SR.Unreachable,
let ae' = VarEnv.{ ae with lvl = NotTopLvl } in
G.loop0 (compile_exp_unit env ae' e ^^ G.i (Br (nr 0l))
)
^^
G.i Unreachable
| SwitchE (e, cs) when single_case e cs ->
let code1 = compile_exp_vanilla env ae e in
let [@warning "-8"] [{it={pat={it=TagP (_, pat');_} as pat; exp}; _}] = cs in
let ae1, pat_code = compile_pat_local env ae {pat with it = known_tag_pat pat'} in
let sr, rhs_code = compile_exp_with_hint env ae1 sr_hint exp in
(* Use the expected stackrep, if given, else infer from the branches *)
let final_sr = match sr_hint with
| Some sr -> sr
| None -> sr
in
final_sr,
(* Run rest in block to exit from *)
FakeMultiVal.block_ env (StackRep.to_block_type env final_sr) (fun branch_code ->
orsPatternFailure env (List.map (fun (sr, c) ->
c ^^^ CannotFail (StackRep.adjust env sr final_sr ^^ branch_code)
) [sr, CannotFail code1 ^^^ pat_code ^^^ CannotFail rhs_code]) ^^
G.i Unreachable (* We should always exit using the branch_code *)
)
| SwitchE (e, cs) ->
let code1 = compile_exp_vanilla env ae e in
let (set_i, get_i) = new_local env "switch_in" in
(* compile subexpressions and collect the provided stack reps *)
let codes = List.map (fun {it={pat; exp=e}; _} ->
let (ae1, pat_code) = compile_pat_local env ae pat in
let (sr, rhs_code) = compile_exp_with_hint env ae1 sr_hint e in
(sr, CannotFail get_i ^^^ pat_code ^^^ CannotFail rhs_code)
) (simplify_cases e cs) in
(* Use the expected stackrep, if given, else infer from the branches *)
let final_sr = match sr_hint with
| Some sr -> sr
| None -> StackRep.joins (List.map fst codes)
in
final_sr,
(* Run scrut *)
code1 ^^ set_i ^^
(* Run rest in block to exit from *)
FakeMultiVal.block_ env (StackRep.to_block_type env final_sr) (fun branch_code ->
orsPatternFailure env (List.map (fun (sr, c) ->
c ^^^ CannotFail (StackRep.adjust env sr final_sr ^^ branch_code)
) codes) ^^
G.i Unreachable (* We should always exit using the branch_code *)
)
(* Async-wait lowering support features *)
| DeclareE (name, typ, e) ->
let ae1, i = VarEnv.add_local_with_heap_ind env ae name typ in
let sr, code = compile_exp env ae1 e in
sr,
MutBox.alloc env ^^ G.i (LocalSet (nr i)) ^^
code
| DefineE (name, _, e) ->
SR.unit,
let pre_code, sr, code = Var.set_val env ae name in
pre_code ^^
compile_exp_as env ae sr e ^^
code
| FuncE (x, sort, control, typ_binds, args, res_tys, e) ->
let captured = Freevars.captured exp in
let return_tys = match control with
| Type.Returns -> res_tys
| Type.Replies -> []
| Type.Promises -> assert false in
let return_arity = List.length return_tys in
let mk_body env1 ae1 = compile_exp_as env1 ae1 (StackRep.of_arity return_arity) e in
FuncDec.lit env ae x sort control captured args mk_body return_tys exp.at
| SelfCallE (ts, exp_f, exp_k, exp_r, exp_c) ->
SR.unit,
let (set_future, get_future) = new_local env "future" in
let (set_k, get_k) = new_local env "k" in
let (set_r, get_r) = new_local env "r" in
let (set_c, get_c) = new_local env "c" in
let mk_body env1 ae1 = compile_exp_as env1 ae1 SR.unit exp_f in
let captured = Freevars.captured exp_f in
let add_cycles = Internals.add_cycles env ae in
FuncDec.async_body env ae ts captured mk_body exp.at ^^
Tagged.load_forwarding_pointer env ^^
set_future ^^
compile_exp_vanilla env ae exp_k ^^ set_k ^^
compile_exp_vanilla env ae exp_r ^^ set_r ^^
compile_exp_vanilla env ae exp_c ^^ set_c ^^
FuncDec.ic_self_call env ts
IC.(get_self_reference env ^^
actor_public_field env async_method_name)
get_future
get_k
get_r
get_c
add_cycles
| ActorE (ds, fs, _, _) ->
fatal "Local actors not supported by backend"
| NewObjE (Type.(Object | Module | Memory) as _sort, fs, _) ->
(*
We can enable this warning once we treat everything as static that
mo_frontend/static.ml accepts, including _all_ literals.
if sort = Type.Module then Printf.eprintf "%s" "Warning: Non-static module\n";
*)
SR.Vanilla,
let fs' = fs |> List.map
(fun (f : Ir.field) -> (f.it.name, fun () ->
if Type.is_mut f.note
then Var.get_aliased_box env ae f.it.var
else Var.get_val_vanilla env ae f.it.var)) in
Object.lit_raw env fs'
| _ -> SR.unit, todo_trap env "compile_exp" (Arrange_ir.exp exp)
and compile_exp_ignore env ae e =
let sr, code = compile_exp env ae e in
code ^^ StackRep.drop env sr
and compile_exp_as_opt env ae sr_out_o e =
let sr_in, code = compile_exp_with_hint env ae sr_out_o e in
G.with_region e.at (
code ^^
match sr_out_o with
| None -> StackRep.drop env sr_in
| Some sr_out -> StackRep.adjust env sr_in sr_out
)
and compile_exp_vanilla (env : E.t) ae exp =
compile_exp_as env ae SR.Vanilla exp
and compile_exp_unit (env : E.t) ae exp =
compile_exp_as env ae SR.unit exp
(* compiles to something that works with IfE or Eqz
(SR.UnboxedWord64 or SR.Vanilla are _both_ ok)
*)
and compile_exp_as_test env ae e =
let sr, code = compile_exp env ae e in
code ^^
(if sr != SR.bool then StackRep.adjust env sr SR.Vanilla else G.nop)
(* Compile a prim of type Char -> Char to a RTS call. *)
and compile_char_to_char_rts env ae exp rts_fn =
SR.UnboxedWord64 Type.Char,
compile_exp_as env ae (SR.UnboxedWord64 Type.Char) exp ^^
TaggedSmallWord.lsb_adjust_codepoint env ^^
G.i (Convert (Wasm_exts.Values.I32 I32Op.WrapI64)) ^^
E.call_import env "rts" rts_fn ^^
G.i (Convert (Wasm_exts.Values.I64 I64Op.ExtendUI32)) ^^
TaggedSmallWord.msb_adjust_codepoint
(* Compile a prim of type Char -> Bool to a RTS call. The RTS function should
have type int32_t -> int32_t where the return value is 0 for 'false' and 1
for 'true'. *)
and compile_char_to_bool_rts (env : E.t) (ae : VarEnv.t) exp rts_fn =
SR.bool,
compile_exp_as env ae (SR.UnboxedWord64 Type.Char) exp ^^
TaggedSmallWord.lsb_adjust_codepoint env ^^
G.i (Convert (Wasm_exts.Values.I32 I32Op.WrapI64)) ^^
(* The RTS function returns Motoko True/False values (which are represented as
1 and 0, respectively) so we don't need any marshalling *)
E.call_import env "rts" rts_fn ^^
Bool.from_rts_int32
(*
The compilation of declarations (and patterns!) needs to handle mutual recursion.
This requires conceptually three passes:
1. First we need to collect all names bound in a block,
and find locations for then (which extends the environment).
The environment is extended monotonically: The type-checker ensures that
a Block does not bind the same name twice.
We would not need to pass in the environment, just out ... but because
it is bundled in the E.t type, threading it through is also easy.
2. We need to allocate memory for them, and store the pointer in the
WebAssembly local, so that they can be captured by closures.
3. We go through the declarations, generate the actual code and fill the
allocated memory.
This includes creating the actual closure references.
We could do this in separate functions, but I chose to do it in one
* it means all code related to one constructor is in one place and
* when generating the actual code, we still “know” the id of the local that
has the memory location, and don’t have to look it up in the environment.
The first phase works with the `pre_env` passed to `compile_dec`,
while the third phase is a function that expects the final environment. This
enabled mutual recursion.
*)
and compile_lit_pat env l =
match l with
| NullLit ->
Opt.is_null env
| BoolLit true ->
G.nop
| BoolLit false ->
compile_test I64Op.Eqz
| (NatLit _ | IntLit _) ->
compile_lit_as env SR.Vanilla l ^^
BigNum.compile_eq env
| Nat8Lit _ ->
compile_lit_as env SR.Vanilla l ^^
compile_eq env Type.(Prim Nat8)
| Nat16Lit _ ->
compile_lit_as env SR.Vanilla l ^^
compile_eq env Type.(Prim Nat16)
| Nat32Lit _ ->
compile_lit_as env SR.Vanilla l ^^
compile_eq env Type.(Prim Nat32)
| Nat64Lit _ ->
BoxedWord64.unbox env Type.Nat64 ^^
compile_lit_as env (SR.UnboxedWord64 Type.Nat64) l ^^
compile_eq env Type.(Prim Nat64)
| Int8Lit _ ->
compile_lit_as env SR.Vanilla l ^^
compile_eq env Type.(Prim Int8)
| Int16Lit _ ->
compile_lit_as env SR.Vanilla l ^^
compile_eq env Type.(Prim Int16)
| Int32Lit _ ->
compile_lit_as env SR.Vanilla l ^^
compile_eq env Type.(Prim Int32)
| Int64Lit _ ->
BoxedWord64.unbox env Type.Int64 ^^
compile_lit_as env (SR.UnboxedWord64 Type.Int64) l ^^
compile_eq env Type.(Prim Int64)
| CharLit _ ->
compile_lit_as env SR.Vanilla l ^^
compile_eq env Type.(Prim Char)
| TextLit t ->
compile_lit_as env SR.Vanilla l ^^
Text.compare env Operator.EqOp
| BlobLit t ->
compile_lit_as env SR.Vanilla l ^^
Blob.compare env (Some Operator.EqOp)
| FloatLit _ ->
todo_trap env "compile_lit_pat" (Arrange_ir.lit l)
and fill_pat env ae pat : patternCode =
PatCode.with_region pat.at @@
match pat.it with
| _ when Ir_utils.is_irrefutable_nonbinding pat -> CannotFail (G.i Drop)
| WildP -> assert false (* matched above *)
| OptP p when Ir_utils.is_irrefutable_nonbinding p ->
CanFail (fun fail_code ->
Opt.is_some env ^^
E.if0 G.nop fail_code)
| OptP p ->
let (set_x, get_x) = new_local env "opt_scrut" in
CanFail (fun fail_code ->
set_x ^^
get_x ^^
Opt.is_some env ^^
E.if0
( get_x ^^
Opt.project env ^^
with_fail fail_code (fill_pat env ae p)
)
fail_code
)
| TagP ("", p) -> (* these only come from known_tag_pat *)
if Ir_utils.is_irrefutable_nonbinding p
then CannotFail (G.i Drop)
else CannotFail (Variant.project env) ^^^ fill_pat env ae p
| TagP (l, p) when Ir_utils.is_irrefutable_nonbinding p ->
CanFail (fun fail_code ->
Variant.test_is env l ^^
E.if0 G.nop fail_code)
| TagP (l, p) ->
let (set_x, get_x) = new_local env "tag_scrut" in
CanFail (fun fail_code ->
set_x ^^
get_x ^^
Variant.test_is env l ^^
E.if0
( get_x ^^
Variant.project env ^^
with_fail fail_code (fill_pat env ae p)
)
fail_code
)
| LitP l ->
CanFail (fun fail_code ->
compile_lit_pat env l ^^
E.if0 G.nop fail_code)
| VarP name ->
CannotFail (Var.set_val_vanilla_from_stack env ae name)
| TupP ps ->
let (set_i, get_i) = new_local env "tup_scrut" in
let rec go i = function
| [] -> CannotFail G.nop
| p::ps ->
let code1 = fill_pat env ae p in
let code2 = go (Int64.add i 1L) ps in
CannotFail (get_i ^^ Tuple.load_n env i) ^^^ code1 ^^^ code2 in
CannotFail set_i ^^^ go 0L ps
| ObjP pfs ->
let project = compile_load_field env pat.note in
let (set_i, get_i) = new_local env "obj_scrut" in
let rec go = function
| [] -> CannotFail G.nop
| {it={name; pat}; _}::pfs' ->
let code1 = fill_pat env ae pat in
let code2 = go pfs' in
CannotFail (get_i ^^ project name) ^^^ code1 ^^^ code2 in
CannotFail set_i ^^^ go pfs
| AltP (p1, p2) ->
let code1 = fill_pat env ae p1 in
let code2 = fill_pat env ae p2 in
let (set_i, get_i) = new_local env "alt_scrut" in
CannotFail set_i ^^^
orElse (CannotFail get_i ^^^ code1)
(CannotFail get_i ^^^ code2)
and alloc_pat_local env ae pat =
let d = Freevars.pat pat in
AllocHow.M.fold (fun v typ ae ->
let (ae1, _i) = VarEnv.add_direct_local env ae v SR.Vanilla typ
in ae1
) d ae
and alloc_pat env ae how pat : VarEnv.t * G.t =
(fun (ae, code) -> (ae, G.with_region pat.at code)) @@
let d = Freevars.pat pat in
AllocHow.M.fold (fun v typ (ae, code0) ->
let ae1, code1 = AllocHow.add_local env ae how v typ
in (ae1, code0 ^^ code1)
) d (ae, G.nop)
and compile_pat_local env ae pat : VarEnv.t * patternCode =
(* It returns:
- the extended environment
- the patternCode to do the pattern matching.
This expects the undestructed value is on top of the stack,
consumes it, and fills the heap.
If the pattern matches, execution continues (with nothing on the stack).
If the pattern does not match, it fails (in the sense of PatCode.CanFail)
*)
let ae1 = alloc_pat_local env ae pat in
let fill_code = fill_pat env ae1 pat in
(ae1, fill_code)
(* Used for let patterns:
If the pattern can consume its scrutinee in a better form than vanilla (e.g.
unboxed tuple, unboxed 32/64), lets do that.
*)
and compile_unboxed_pat env ae how pat
: VarEnv.t * G.t * G.t * SR.t option * G.t =
(* It returns:
- the extended environment
- the code to allocate memory
- the code to prepare the stack (e.g. push destination addresses)
before the scrutinee is pushed
- the desired stack rep. None means: Do not even push the scrutinee.
- the code to do the pattern matching.
This expects the undestructed value is on top of the stack,
consumes it, and fills the heap
If the pattern does not match, it traps with pattern failure
*)
let (ae1, alloc_code) = alloc_pat env ae how pat in
let pre_code, sr, fill_code = match pat.it with
(* Nothing to match: Do not even put something on the stack *)
| WildP -> G.nop, None, G.nop
(* Tuple patterns *)
| TupP ps when List.length ps <> 1 ->
G.nop,
Some (SR.UnboxedTuple (List.length ps)),
(* We have to fill the pattern in reverse order, to take things off the
stack. This is only ok as long as patterns have no side effects.
*)
G.concat_mapi (fun i p -> orPatternFailure env (fill_pat env ae1 p)) (List.rev ps)
(* Variable patterns *)
| VarP name ->
let pre_code, sr, code = Var.set_val env ae1 name in
pre_code, Some sr, code
(* The general case: Create a single value, match that. *)
| _ ->
G.nop,
Some SR.Vanilla,
orPatternFailure env (fill_pat env ae1 pat) in
let pre_code = G.with_region pat.at pre_code in
let fill_code = G.with_region pat.at fill_code in
(ae1, alloc_code, pre_code, sr, fill_code)
and compile_dec env pre_ae how v2en dec : VarEnv.t * G.t * (VarEnv.t -> scope_wrap) =
(fun (pre_ae, alloc_code, mk_code, wrap) ->
G.(pre_ae, with_region dec.at alloc_code, fun ae body_code ->
with_region dec.at (mk_code ae) ^^ wrap body_code)) @@
match dec.it with
(* A special case for public methods *)
(* This relies on the fact that in the top-level mutually recursive group, no shadowing happens. *)
| LetD ({it = VarP v; _}, e) when E.NameEnv.mem v v2en ->
let (const, fill) = compile_const_exp env pre_ae e in
let fi = match const with
| Const.Message fi -> fi
| _ -> assert false in
let pre_ae1 = VarEnv.add_local_public_method pre_ae v (fi, (E.NameEnv.find v v2en)) e.note.Note.typ in
G.( pre_ae1, nop, (fun ae -> fill env ae; nop), unmodified)
(* A special case for constant expressions *)
| LetD (p, e) when e.note.Note.const ->
(* constant expression matching with patterns is fully decidable *)
if const_exp_matches_pat env pre_ae p e then (* not refuted *)
let extend, fill = compile_const_dec env pre_ae dec in
G.(extend pre_ae, nop, (fun ae -> fill env ae; nop), unmodified)
else (* refuted *)
(pre_ae, G.nop, (fun _ -> PatCode.patternFailTrap env), unmodified)
| LetD (p, e) ->
let (pre_ae1, alloc_code, pre_code, sr, fill_code) = compile_unboxed_pat env pre_ae how p in
( pre_ae1, alloc_code,
(fun ae -> pre_code ^^ compile_exp_as_opt env ae sr e ^^ fill_code),
unmodified
)
| VarD (name, content_typ, e) ->
assert AllocHow.(match M.find_opt name how with
| Some (LocalMut _ | StoreHeap | StoreStatic) -> true
| _ -> false);
let var_typ = Type.Mut content_typ in
let pre_ae1, alloc_code = AllocHow.add_local env pre_ae how name var_typ in
( pre_ae1,
alloc_code,
(fun ae -> let pre_code, sr, code = Var.set_val env ae name in
pre_code ^^ compile_exp_as env ae sr e ^^ code),
unmodified
)
| RefD (name, typ, { it = DotLE (e, n); _ }) ->
let pre_ae1, alloc_code = AllocHow.add_local_for_alias env pre_ae how name typ in
( pre_ae1,
alloc_code,
(fun ae ->
compile_exp_vanilla env ae e ^^
Object.load_idx_raw env n ^^
Var.capture_aliased_box env ae name),
unmodified
)
| RefD _ -> assert false
and compile_decs_public env pre_ae decs v2en captured_in_body : VarEnv.t * scope_wrap =
let how = AllocHow.decs pre_ae decs captured_in_body in
let rec go pre_ae = function
| [] -> (pre_ae, G.nop, fun _ -> unmodified)
| [dec] -> compile_dec env pre_ae how v2en dec
| dec::decs ->
let (pre_ae1, alloc_code1, mk_codeW1) = compile_dec env pre_ae how v2en dec in
let (pre_ae2, alloc_code2, mk_codeW2) = go pre_ae1 decs in
( pre_ae2,
alloc_code1 ^^ alloc_code2,
fun ae -> let codeW1 = mk_codeW1 ae in
let codeW2 = mk_codeW2 ae in
fun body_code -> codeW1 (codeW2 body_code)
) in
let (ae1, alloc_code, mk_codeW) = go pre_ae decs in
(ae1, fun body_code -> alloc_code ^^ mk_codeW ae1 body_code)
and compile_decs env ae decs captured_in_body : VarEnv.t * scope_wrap =
compile_decs_public env ae decs E.NameEnv.empty captured_in_body
(* This compiles expressions determined to be const as per the analysis in
ir_passes/const.ml. See there for more details.
*)
and compile_const_exp env pre_ae exp : Const.v * (E.t -> VarEnv.t -> unit) =
match exp.it with
| FuncE (name, sort, control, typ_binds, args, res_tys, e) ->
let fun_rhs =
(* a few prims cannot be safely inlined *)
let inlineable_prim = function
| RetPrim -> false
| BreakPrim _ -> false
| ThrowPrim -> fatal "internal error: left-over ThrowPrim"
| _ -> true in
match sort, control, typ_binds, e.it with
(* Special cases for prim-wrapping functions *)
| Type.Local, Type.Returns, [], PrimE (prim, prim_args) when
inlineable_prim prim &&
List.length args = List.length prim_args &&
List.for_all2 (fun p a -> a.it = VarE (Const, p.it)) args prim_args ->
Const.PrimWrapper prim
| _, _, _, _ -> Const.Complicated
in
let return_tys = match control with
| Type.Returns -> res_tys
| Type.Replies -> []
| Type.Promises -> assert false in
let mk_body env ae =
List.iter (fun v ->
if not (VarEnv.NameEnv.mem v ae.VarEnv.vars)
then fatal "internal error: const \"%s\": captures \"%s\", not found in static environment\n" name v
) (Freevars.M.keys (Freevars.exp e));
compile_exp_as env ae (StackRep.of_arity (List.length return_tys)) e in
FuncDec.closed env sort control name args mk_body fun_rhs return_tys exp.at
| BlockE (decs, e) ->
let (extend, fill1) = compile_const_decs env pre_ae decs in
let ae' = extend pre_ae in
let (c, fill2) = compile_const_exp env ae' e in
(c, fun env ae ->
let ae' = extend ae in
fill1 env ae';
fill2 env ae')
| VarE (_, v) ->
let c =
match VarEnv.lookup_var pre_ae v with
| Some (VarEnv.Const c) -> c
| _ -> fatal "compile_const_exp/VarE: \"%s\" not found" v
in
(c, fun _ _ -> ())
| NewObjE (Type.(Object | Module | Memory), fs, _) ->
let static_fs = List.map (fun f ->
let st =
match VarEnv.lookup_var pre_ae f.it.var with
| Some (VarEnv.Const c) -> c
| _ -> fatal "compile_const_exp/ObjE: \"%s\" not found" f.it.var
in f.it.name, st) fs
in
(Const.Obj static_fs), fun _ _ -> ()
| PrimE (DotPrim name, [e]) ->
let (object_ct, fill) = compile_const_exp env pre_ae e in
let fs = match object_ct with
| Const.Obj fs -> fs
| _ -> fatal "compile_const_exp/DotE: not a static object" in
let member_ct = List.assoc name fs in
(member_ct, fill)
| PrimE (ProjPrim i, [e]) ->
let (object_ct, fill) = compile_const_exp env pre_ae e in
let cs = match object_ct with
| Const.Tuple cs -> cs
| _ -> fatal "compile_const_exp/ProjE: not a static tuple" in
(List.nth cs i, fill)
| LitE l -> Const.(Lit (const_lit_of_lit l)), (fun _ _ -> ())
| PrimE (TupPrim, []) -> Const.Unit, (fun _ _ -> ())
| PrimE (ArrayPrim (Const, _), es) ->
let (cs, fills) = List.split (List.map (compile_const_exp env pre_ae) es) in
(Const.Array cs),
(fun env ae -> List.iter (fun fill -> fill env ae) fills)
| PrimE (TupPrim, es) ->
let (cs, fills) = List.split (List.map (compile_const_exp env pre_ae) es) in
(Const.Tuple cs),
(fun env ae -> List.iter (fun fill -> fill env ae) fills)
| PrimE (TagPrim i, [e]) ->
let (arg_ct, fill) = compile_const_exp env pre_ae e in
(Const.Tag (i, arg_ct)),
fill
| PrimE (OptPrim, [e]) ->
let (arg_ct, fill) = compile_const_exp env pre_ae e in
(Const.Opt arg_ct),
fill
| _ -> assert false
and compile_const_decs env pre_ae decs : (VarEnv.t -> VarEnv.t) * (E.t -> VarEnv.t -> unit) =
let rec go pre_ae = function
| [] -> (fun ae -> ae), (fun _ _ -> ())
| [dec] -> compile_const_dec env pre_ae dec
| (dec::decs) ->
let (extend1, fill1) = compile_const_dec env pre_ae dec in
let pre_ae1 = extend1 pre_ae in
let (extend2, fill2) = go pre_ae1 decs in
(fun ae -> extend2 (extend1 ae)),
(fun env ae -> fill1 env ae; fill2 env ae) in
go pre_ae decs
and const_exp_matches_pat env ae pat exp : bool =
assert exp.note.Note.const;
let c, _ = compile_const_exp env ae exp in
match destruct_const_pat VarEnv.empty_ae pat c with Some _ -> true | _ -> false
and destruct_const_pat ae pat const : VarEnv.t option = match pat.it with
| WildP -> Some ae
| VarP v -> Some (VarEnv.add_local_const ae v const pat.note)
| ObjP pfs ->
let fs = match const with Const.Obj fs -> fs | _ -> assert false in
List.fold_left (fun ae (pf : pat_field) ->
match ae, List.find_opt (fun (n, _) -> pf.it.name = n) fs with
| None, _ -> None
| Some ae, Some (_, c) -> destruct_const_pat ae pf.it.pat c
| _, None -> assert false
) (Some ae) pfs
| AltP (p1, p2) ->
let l = destruct_const_pat ae p1 const in
if l = None then destruct_const_pat ae p2 const
else l
| TupP ps ->
let cs = match const with Const.Tuple cs -> cs | Const.Unit -> [] | _ -> assert false in
let go ae p c = match ae with
| Some ae -> destruct_const_pat ae p c
| _ -> None in
List.fold_left2 go (Some ae) ps cs
| LitP lp ->
begin match const with
| Const.Lit lc when Const.lit_eq (const_lit_of_lit lp) lc -> Some ae
| _ -> None
end
| OptP p ->
begin match const with
| Const.Opt c -> destruct_const_pat ae p c
| Const.(Lit Null) -> None
| _ -> assert false
end
| TagP (i, p) ->
match const with
| Const.Tag (ic, c) when i = ic -> destruct_const_pat ae p c
| Const.Tag _ -> None
| _ -> assert false
and compile_const_dec env pre_ae dec : (VarEnv.t -> VarEnv.t) * (E.t -> VarEnv.t -> unit) =
(* This returns a _function_ to extend the VarEnv, instead of doing it, because
it needs to be extended twice: Once during the pass that gets the outer, static values
(no forward references), and then to implement the `fill`, which compiles the bodies
of functions (may contain forward references.) *)
match dec.it with
(* This should only contain constants (cf. is_const_exp) *)
| LetD (p, e) ->
let (const, fill) = compile_const_exp env pre_ae e in
(fun ae -> match destruct_const_pat ae p const with Some ae -> ae | _ -> assert false),
(fun env ae -> fill env ae)
| VarD _ | RefD _ -> fatal "compile_const_dec: Unexpected VarD/RefD"
and compile_init_func mod_env ((cu, flavor) : Ir.prog) =
assert (not flavor.has_typ_field);
assert (not flavor.has_poly_eq);
assert (not flavor.has_show);
assert (not flavor.has_await);
assert (not flavor.has_async_typ);
match cu with
| LibU _ -> fatal "compile_start_func: Cannot compile library"
| ProgU ds ->
Func.define_built_in mod_env "init" [] [] (fun env ->
let _ae, codeW = compile_decs env VarEnv.empty_ae ds Freevars.S.empty in
codeW G.nop
)
| ActorU (as_opt, ds, fs, up, t) ->
main_actor as_opt mod_env ds fs up
and export_actor_field env ae (f : Ir.field) =
(* A public actor field is guaranteed to be compiled as a PublicMethod *)
let fi =
match VarEnv.lookup_var ae f.it.var with
| Some (VarEnv.PublicMethod (fi, _)) -> fi
| _ -> assert false in
E.add_export env (nr {
name = Lib.Utf8.decode (match E.mode env with
| Flags.ICMode | Flags.RefMode ->
Mo_types.Type.(
match normalize f.note with
| Func(Shared sort,_,_,_,_) ->
(match sort with
| Write -> "canister_update " ^ f.it.name
| Query -> "canister_query " ^ f.it.name
| Composite -> "canister_composite_query " ^ f.it.name
)
| _ -> assert false)
| _ -> assert false);
edesc = nr (FuncExport (nr fi))
})
(* Main actor *)
and main_actor as_opt mod_env ds fs up =
let stable_actor_type = up.stable_type in
let build_stable_actor = up.stable_record in
IncrementalGraphStabilization.define_methods mod_env stable_actor_type;
(* Export metadata *)
mod_env.E.stable_types := metadata "motoko:stable-types" up.meta.sig_;
mod_env.E.service := metadata "candid:service" up.meta.candid.service;
mod_env.E.args := metadata "candid:args" up.meta.candid.args;
Func.define_built_in mod_env IC.initialize_main_actor_function_name [] [] (fun env ->
let ae0 = VarEnv.empty_ae in
let captured = Freevars.captured_vars (Freevars.actor ds fs up) in
(* Add any params to the environment *)
(* Captured ones need to go into static memory, the rest into locals *)
let args = match as_opt with None -> [] | Some as_ -> as_ in
let arg_list = List.map (fun a -> (a.it, a.note)) args in
let arg_names = List.map (fun a -> a.it) args in
let arg_tys = List.map (fun a -> a.note) args in
let as_local n = not (Freevars.S.mem n captured) in
let ae1 = VarEnv.add_arguments env ae0 as_local arg_list in
(* Reverse the fs, to a map from variable to exported name *)
let v2en = E.NameEnv.from_list (List.map (fun f -> (f.it.var, f.it.name)) fs) in
(* Compile the declarations *)
let ae2, decls_codeW = compile_decs_public env ae1 ds v2en
Freevars.(captured_vars (system up))
in
(* Export the public functions *)
List.iter (export_actor_field env ae2) fs;
(* Export upgrade hooks *)
Func.define_built_in env "pre_exp" [] [] (fun env ->
compile_exp_as env ae2 SR.unit up.preupgrade);
Func.define_built_in env "post_exp" [] [] (fun env ->
compile_exp_as env ae2 SR.unit up.postupgrade);
IC.export_upgrade_methods env;
(* Export heartbeat (but only when required) *)
begin match up.heartbeat.it with
| Ir.PrimE (Ir.TupPrim, []) -> ()
| _ ->
Func.define_built_in env "heartbeat_exp" [] [] (fun env ->
compile_exp_as env ae2 SR.unit up.heartbeat);
IC.export_heartbeat env;
end;
(* Export timer (but only when required) *)
begin match up.timer.it with
| Ir.PrimE (Ir.TupPrim, []) -> ()
| _ ->
Func.define_built_in env "timer_exp" [] [] (fun env ->
compile_exp_as env ae2 SR.unit up.timer);
IC.export_timer env;
end;
(* Export inspect (but only when required) *)
begin match up.inspect.it with
| Ir.PrimE (Ir.TupPrim, []) -> ()
| _ ->
Func.define_built_in env "inspect_exp" [] [] (fun env ->
compile_exp_as env ae2 SR.unit up.inspect);
IC.export_inspect env;
end;
(* Helper function to build the stable actor wrapper *)
Func.define_built_in mod_env IC.get_actor_to_persist_function_name [] [I64Type] (fun env ->
compile_exp_as env ae2 SR.Vanilla build_stable_actor
);
(* Deserialize the init arguments *)
begin match as_opt with
| None
| Some [] ->
(* Liberally accept empty as well as unit argument *)
assert (arg_tys = []);
Persistence.get_init_message_payload env ^^
Blob.len env ^^
compile_eq_const 0L ^^
E.if0
G.nop
begin
(* Only validate the message payload. *)
Persistence.get_init_message_payload env ^^
Bool.lit false ^^ (* cannot recover *)
Serialization.deserialize_from_blob false env arg_tys
end
| Some (_ :: _) ->
Persistence.get_init_message_payload env ^^
Bool.lit false ^^ (* cannot recover *)
Serialization.deserialize_from_blob false env arg_tys ^^
G.concat_map (Var.set_val_vanilla_from_stack env ae1) (List.rev arg_names)
end ^^
begin
if up.timer.at <> no_region then
(* initiate a timer pulse *)
compile_unboxed_const 1L ^^
IC.system_call env "global_timer_set" ^^
G.i Drop
else
G.nop
end ^^
decls_codeW G.nop
);
Func.define_built_in mod_env "init" [] [] (fun env ->
IC.init_globals env ^^
(* Save the init message payload for later deserializtion. *)
IC.arg_data env ^^
Persistence.set_init_message_payload env ^^
Persistence.initialize env stable_actor_type
)
and metadata name value =
if List.mem name !Flags.omit_metadata_names then None
else Some (
List.mem name !Flags.public_metadata_names,
value)
and conclude_module env set_serialization_globals start_fi_o =
RTS_Exports.system_exports env;
FuncDec.export_async_method env;
FuncDec.export_gc_trigger_method env;
FuncDec.export_stabilization_limits env;
(* See Note [Candid subtype checks] *)
Serialization.create_global_type_descriptor env set_serialization_globals;
(* declare before building GC *)
(* add beginning-of-heap pointer, may be changed by linker *)
(* needs to happen here now that we know the size of static memory *)
let set_heap_base = E.add_global64_delayed env "__heap_base" Immutable in
E.export_global env "__heap_base";
Heap.register env;
IC.register env;
let dynamic_heap_start = Lifecycle.end_ () in
set_heap_base dynamic_heap_start;
(* Wrap the start function with the RTS initialization *)
let rts_start_fi = E.add_fun env "rts_start" (Func.of_body env [] [] (fun env1 ->
E.call_import env "rts" ("initialize_incremental_gc") ^^
GCRoots.register_static_variables env ^^
match start_fi_o with
| Some fi ->
G.i (Call fi)
| None ->
Lifecycle.set env Lifecycle.PreInit
)) in
IC.default_exports env;
let func_imports = E.get_func_imports env in
let ni = List.length func_imports in
let ni' = Int32.of_int ni in
let other_imports = E.get_other_imports env in
let initial_memory_pages = Int64.(add (div dynamic_heap_start page_size) 1L) in
let memories = E.get_memories env initial_memory_pages in
let funcs = E.get_funcs env in
let datas = List.map (fun (dinit) -> nr {
dinit;
dmode = (nr Wasm_exts.Ast.Passive);
}) (E.get_data_segments env) in
let elems = List.map (fun (fi, fp) -> nr {
index = nr 0l;
offset = nr (G.to_instr_list (compile_const_32 fp));
init = [ nr fi ];
}) (E.get_elems env) in
let table_sz = E.get_end_of_table env in
let module_ = {
types = List.map nr (E.get_types env);
funcs = List.map (fun (f,_,_) -> f) funcs;
tables = [ nr { ttype = TableType ({min = table_sz; max = Some table_sz}, FuncRefType) } ];
elems;
start = Some (nr rts_start_fi);
globals = E.get_globals env;
memories;
imports = func_imports @ other_imports;
exports = E.get_exports env;
datas
} in
let emodule =
let open Wasm_exts.CustomModule in
{ module_;
dylink0 = [];
name = { empty_name_section with function_names =
List.mapi (fun i (f,n,_) -> Int32.(add ni' (of_int i), n)) funcs;
locals_names =
List.mapi (fun i (f,_,ln) -> Int32.(add ni' (of_int i), ln)) funcs; };
motoko = {
labels = E.get_labs env;
stable_types = !(env.E.stable_types);
compiler = metadata "motoko:compiler" (Lib.Option.get Source_id.release Source_id.id);
};
enhanced_orthogonal_persistence = Some (false, "64-bit, layout version 1");
candid = {
args = !(env.E.args);
service = !(env.E.service);
};
source_mapping_url = None;
wasm_features = E.get_features env;
} in
match E.get_rts env with
| None -> emodule
| Some rts -> Linking.LinkModule.link emodule "rts" rts
let compile mode rts (prog : Ir.prog) : Wasm_exts.CustomModule.extended_module =
(* Enhanced orthogonal persistence requires a fixed layout. *)
assert !Flags.rtti; (* Use precise tagging for graph copy. *)
assert (!Flags.gc_strategy = Flags.Incremental); (* Define heap layout with the incremental GC. *)
let env = E.mk_global mode rts IC.trap_with in
IC.register_globals env;
Stack.register_globals env;
GC.register_globals env;
StableMem.register_globals env;
Serialization.Registers.register_globals env;
Serialization.Registers.define_idl_limit_check env;
IncrementalGraphStabilization.register_globals env;
Persistence.register_globals env;
(* See Note [Candid subtype checks] *)
let set_serialization_globals = Serialization.register_delayed_globals env in
Serialization.reserve_global_type_descriptor env;
IC.system_imports env;
RTS.system_imports env;
compile_init_func env prog;
let start_fi_o = match E.mode env with
| Flags.ICMode | Flags.RefMode ->
IC.export_init env;
None
| Flags.WASIMode ->
IC.export_wasi_start env;
None
| Flags.WasmMode ->
Some (nr (E.built_in env "init"))
in
conclude_module env set_serialization_globals start_fi_o